Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions

Yong-Peng Miao Jing Lyu Hai-Yang Yong Sigen A Yong-Sheng Gao Wen-Xin Wang

Citation:  Yong-Peng Miao, Jing Lyu, Hai-Yang Yong, Sigen A, Yong-Sheng Gao, Wen-Xin Wang. Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions[J]. Chinese Journal of Polymer Science, 2019, 37(6): 591-597. doi: 10.1007/s10118-019-2236-x shu

Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions

English


    1. [1]

      Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. doi: 10.1016/j.progpolymsci.2006.11.002

    2. [2]

      Anastasaki, A.; Nikolaou, V.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: Recent highlights and applications: A perspective. Polym. Chem. 2016, 7, 1002–1026. doi: 10.1039/C5PY01916H

    3. [3]

      Georges, M. K.; Veregin, R. P. N.; Kazmaier P. M.; Hamer, G. K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988. doi: 10.1021/ma00063a054

    4. [4]

      Hawker, C. J.; Barclay G. G.; Dao, J. Radical crossover in nitroxide mediated " living” free radical polymerizations. J. Am. Chem. Soc. 1996, 118, 11467–11471. doi: 10.1021/ja9624228

    5. [5]

      Wang, J. S.; Matyjaszewski, K. " Living”/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 1995, 28, 7572–7573. doi: 10.1021/ma00126a041

    6. [6]

      Krys, P.; Matyjaszewski, K. Kinetics of atom transfer radical polymerization. Eur. Polym. J. 2017, 89, 482–523. doi: 10.1016/j.eurpolymj.2017.02.034

    7. [7]

      Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559–5562. doi: 10.1021/ma9804951

    8. [8]

      K. Matyjaszewski, K.; Tsarevsky, N. V.; Braunecker, W. A.; Dong, H.; Huang, J.; Jakubowski, W.; Kwak, Y.; Nicolay, R.; Tang, W.; Yoon, J. A. Role of Cu0 in controlled/" living” radical polymerization. Macromolecules 2007, 40, 7795–7806. doi: 10.1021/ma0717800

    9. [9]

      Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 2006, 128, 14156–14165. doi: 10.1021/ja065484z

    10. [10]

      Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem. Rev. 2016, 116, 835–877. doi: 10.1021/acs.chemrev.5b00191

    11. [11]

      Zhang, N.; Samanta, S. R.; Rosen B. M.; Percec, V. Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis. Chem. Rev. 2014, 114, 5848–5958. doi: 10.1021/cr400689s

    12. [12]

      Rose, B. M.; Jiang, X.; Wilson, C. J.; Nguyen, N. H.; Monteiro, M. J.; Percec, V. The disproportionation of Cu(I)X mediated by ligand and solvent into Cu(0) and Cu(II)X2 and its implications for SET-LRP. J. Polym. Sci., Part A: Polym. Chem. 2010, 47, 5606–5628.

    13. [13]

      Matyjaszewski, K.; Coca, S.; Gaynor, S. G.; Wei, M.; Woodworth, B. E. Zerovalent metals in controlled/" living” radical polymerization. Macromolecules 1997, 30, 7348–7350. doi: 10.1021/ma971258l

    14. [14]

      Wang, Y.; Zhong, M.; Zhu, W.; Peng, C. H.; Zhang, Y.; Konkolewicz, D.; Bortolamei, N.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Comproportionation−disproportionation equilibria and kinetics. Macromolecules 2013, 46, 3793–3802. doi: 10.1021/ma400149t

    15. [15]

      Peng, C.; Zhong, M.; Wang, Y.; Kwak, Y.; Zhang, Y.; Zhu, W.; Tonge, M.; Buback, J.; Park, S.; Krys, P.; Konkolewicz, D.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Activation of alkyl halides by Cu0. Macromolecules 2013, 46, 3803–3815. doi: 10.1021/ma400150a

    16. [16]

      Zhong, M.; Wang, Y.; Krys, P.; Konkolewicz, D.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. Kinetic simulation. Macromolecules 2013, 46, 3816–3827. doi: 10.1021/ma4001513

    17. [17]

      Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. Reversible-deactivation radical polymerization in the presence of metallic copper. A critical assessment of the SARA ATRP and SET-LRP mechanisms. Macromolecules 2013, 46, 8749–8772. doi: 10.1021/ma401243k

    18. [18]

      Konkolewicz, D.; Wang, Y.; Krys, P.; Zhong, M.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 2014, 5, 4396–4417. doi: 10.1039/c4py00564c

    19. [19]

      Harrisson, S.; Couvreur, P.; Nicolas, J. Comproportionation versus disproportionation in the initiation step of Cu(0)-mediated living radical polymerization. Macromolecules 2012, 45, 7388–7396. doi: 10.1021/ma301034t

    20. [20]

      Tom, J.; Hornby, B.; West, A.; Harrisson, S.; Perrier, S. Copper(0)-mediated living radical polymerization of styrene. Polym. Chem. 2010, 1, 420–422. doi: 10.1039/b9py00382g

    21. [21]

      West, A. G.; Hornby, B.; Tom, J.; Ladmiral, V.; Harrisson S.; Perrier, S. Origin of initial uncontrolled polymerization and its suppression in the copper(0)-mediated living radical polymerization of methyl acrylate in a nonpolar solvent. Macromolecules 2011, 44, 8034–8041. doi: 10.1021/ma201568h

    22. [22]

      Gao, Y.; Zhao, T.; Wang, W. Is it ATRP or SET-LRP? part I: Cu0&CuII/PMDETA-mediated reversible-deactivation radical polymerization. RSC Adv. 2014, 4, 61687–61690. doi: 10.1039/C4RA11477A

    23. [23]

      Gao, Y.; Zhao, T.; Zhou, D.; Greiser, U.; Wang, W. Insights into relevant mechanistic aspects about the induction period of Cu0/Me6TREN-mediated reversible-deactivation radical polymerization. Chem. Commun. 2015, 51, 14435–14438. doi: 10.1039/C5CC05189D

    24. [24]

      Boyer, C.; Corrigan, N. A.; Jung, K.; Nguyen, D.; Nguyen, T. K.; Adnan, N. N. M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): From fundamentals to bioapplications. Chem. Rev. 2016, 116, 1803–1949. doi: 10.1021/acs.chemrev.5b00396

    25. [25]

      Wang, W.; Zhao, J.; Zhou, N.; Zhu, J.; Zhang, W.; Pan, X.; Zhang, Z.; Zhu, X. Reversible deactivation radical polymerization in the presence of zero-valent metals: From components to precise polymerization. Polym. Chem. 2014, 5, 3533–3546. doi: 10.1039/C3PY01398G

    26. [26]

      Nanda, A. K.; Matyjaszewski, K. Effect of [bpy]/[Cu(I)] ratio, solvent, counterion, and alkyl bromides on the activation rate constants in atom transfer radical polymerization. Macromolecules 2003, 36, 599–604. doi: 10.1021/ma021418f

    27. [27]

      Tang, W.; Matyjaszewski, K. Effects of initiator structure on activation rate constants in ATRP. Macromolecules 2007, 40, 1858–1863. doi: 10.1021/ma062897b

    28. [28]

      Tang, W.; Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 2006, 39, 4953–3357. doi: 10.1021/ma0609634

    29. [29]

      Zhang, Y.; Wang, Y.; Peng, C. H.; Zhong, M.; Zhu, W.; Konkolewicz, D.; Matyjaszewski, K.; Copper-mediated CRP of methyl acrylate in the presence of metallic copper: Effect of ligand structure on reaction kinetics. Macromolecules 2012, 45, 78–86. doi: 10.1021/ma201963c

    30. [30]

      Horn, M.; Matyjaszewski, K. Solvent effects on the activation rate constant in atom transfer radical polymerization. Macromolecules 2013, 46, 3350–3357. doi: 10.1021/ma400565k

    31. [31]

      Braunecker, W. A.; Tsarevsky, N. V.; Gennaro, A.; Matyjaszewski, K. Thermodynamic components of the atom transfer radical polymerization equilibrium: Quantifying solvent effects. Macromolecules 2009, 42, 6348–6360. doi: 10.1021/ma901094s

    32. [32]

      Lligadas, G.; Percec, V. Alkyl chloride initiators for SET-LRP of methyl acrylate. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4917–4926. doi: 10.1002/(ISSN)1099-0518

    33. [33]

      Matyjaszewski, K.; Göbelt, B.; Paik, H. J.; Horwitz, C. P. Tridentate nitrogen-based ligands in Cu-based ATRP: A structure-activity study. Macromolecules 2001, 34, 430–440. doi: 10.1021/ma001181s

    34. [34]

      Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012, 45, 4015–4039. doi: 10.1021/ma3001719

    35. [35]

      Zebende, G.; da Silva Filho, A. Detrended multiple cross-correlation coefficient. Phys. A Stat. Mech. its Appl. 2018, 510, 91–97. doi: 10.1016/j.physa.2018.06.119

    36. [36]

      Whitfield, R.; Anastasaki, A.; Jones, G. R.; Haddleton, D. M. Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polym. Chem. 2018, 9.4395–4403. doi: 10.1039/C8PY00814K

    37. [37]

      Jones, G. R.; Whitfield, R.; Anastasaki, A.; Risangud, N.; Simula, A.; Keddie, D. J.; Haddleton, D. M. Cu(0)-RDRP of methacrylates in DMSO: Importance of the initiator. Polym. Chem. 2018, 9, 2382–2388. doi: 10.1039/C7PY01196B

    38. [38]

      Whitfield, R.; Anastasaki, A.; Nikolaou, V.; Jones, G. R.; Engelis, N. G.; Discekici, E. H.; Fleischmann, C.; Willenbacher, J.; Hawker, C. J.; Haddleton, D. M. Universal conditions for the controlled polymerization of acrylates, methacrylates and styrene via Cu(0)-RDRP. J. Am. Chem. Soc. 2017, 139, 1003–1010. doi: 10.1021/jacs.6b11783

    39. [39]

      Wang, W.; Zhang, Z.; Wu, Y.; Zhu, J.; Cheng, Z.; Zhou, N.; Zhang, W.; Zhu, X.; Ligand-free Cu(0)-mediated controlled radical polymerization of methyl methacrylate at ambient temperature. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 711–719. doi: 10.1002/pola.25081

    40. [40]

      Hornby, B. D.; West, A. G.; Tom, J. C.; Waterson, C.; Harrisson, S. Copper(0)-mediated living radical polymerization of methyl methacrylate in a non-polar solvent. Macromol. Rapid Commun. 2010, 31, 1276–1280. doi: 10.1002/marc.v31:14

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1493
  • HTML全文浏览量:  25
文章相关
  • 发布日期:  2019-06-01
  • 收稿日期:  2018-11-26
  • 接受日期:  2018-01-01
  • 修回日期:  2019-01-22
  • 网络出版日期:  2019-03-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章