Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction

Juan Du Ji-Hu Wang Hai-Yan Yu Yan-Yan Zhang Li-Hui Pu Jin-Cheng Wang Shu-Yang Lu Si-Hao Chen Tong-He Zhu

Citation:  Juan Du, Ji-Hu Wang, Hai-Yan Yu, Yan-Yan Zhang, Li-Hui Pu, Jin-Cheng Wang, Shu-Yang Lu, Si-Hao Chen, Tong-He Zhu. Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction[J]. Chinese Journal of Polymer Science, 2019, 37(6): 560-569. doi: 10.1007/s10118-019-2231-2 shu

Electrospun Poly(p-dioxanone)/Poly(ester-urethane)ureas Composite Nanofibers for Potential Heart Valve Tissue Reconstruction

English


    1. [1]

      Yang, G. Z.; Li, J. J.; Yu, D. G.; He, M. F.; Yang, J. H.; Williams, G. R. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning. Acta Biomater. 2017, 53, 233-241. doi: 10.1016/j.actbio.2017.01.069

    2. [2]

      Mogosanu, G. D.; Grumezescu, A. M. Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharmaceut. 2014, 463, 127-136. doi: 10.1016/j.ijpharm.2013.12.015

    3. [3]

      Zhao, G. X.; Zhang, X. H.; Lu, T. J.; Xu, F. Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Func. Mater. 2015, 25, 5726-5738. doi: 10.1002/adfm.201502142

    4. [4]

      Luo, X. S.; Guo, Z. Z.; He, P.; Chen, T.; Ding, S.; Li, H. Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. Int. J. Biol. Macromol. 2018, 113, 476-486. doi: 10.1016/j.ijbiomac.2018.01.179

    5. [5]

      Brown, J. H.; Das, P.; Di Vito, M. D.; Ivancic, D.; Tan, L. P.; Wertheim, J. A. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018, 73, 217-227. doi: 10.1016/j.actbio.2018.02.009

    6. [6]

      Francis, M. P.; Sachs, P. C.; Madurantakam, P. A.; Sell, S. A.; Elmore, L. W.; Bowlin, G. L.; Holt, S. E. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J. Biomed. Mater. Res. Part A 2012, 100A, 1716-1724. doi: 10.1002/jbm.a.v100a.7

    7. [7]

      Yu, K.; Zhu, T. H.; Wu, Y.; Zhou, X. X.; Yang, X. C.; Wang, J.; Fang, J.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. M. Incorporation of amoxicillin-loaded organic montmorillonite into poly(ester-urethane) urea nanofibers as a functional tissue engineering scaffold. Coll. Surf. B. 2017, 151, 314-323. doi: 10.1016/j.colsurfb.2016.12.034

    8. [8]

      Jamadi, E. S.; Ghasemi-Mobarakeh, L.; Morshed, M.; Sadeghi, M.; Prabhakaran, M. P.; Ramakrishna, S. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. Mat. Sci. Eng C-Mater. 2016, 63, 106-116. doi: 10.1016/j.msec.2016.02.051

    9. [9]

      Simon, D.; Rodriguez, J. F.; Carmona, M.; Serrano, A.; Borreguero, A. M. Glycolysis of advanced polyurethanes composites containing thermoregulating microcapsules. Chem. Eng. J. 2018, 350, 300-311. doi: 10.1016/j.cej.2018.05.158

    10. [10]

      Wang, Z. G.; Yu, L. Q.; Ding, M. M.; Tan, H.; Li, J. H.; Fu, Q. A. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polym. Chem. 2011, 2, 601-607. doi: 10.1039/C0PY00235F

    11. [11]

      Fang, J.; Ye, S. H.; Shankarraman, V.; Huang, Y. X.; Mo, X. M.; Wagner, W. R. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomater. 2014, 10, 4639-4649. doi: 10.1016/j.actbio.2014.08.008

    12. [12]

      Hao, H. Y.; Shao, J. Y.; Deng, Y.; He, S.; Luo, F.; Wu, Y. K.; Li, J. H.; Tan, H.; Li, J. S.; Fu, Q. Synthesis and characterization of biodegradable lysine-based waterborne polyurethane for soft tissue engineering applications. Biomater. Sci. 2016, 4, 1682-1690. doi: 10.1039/C6BM00588H

    13. [13]

      Liu, J.; Jiang, Z. Z.; Zhang, S. M.; Liu, C.; Gross, R. A.; Kyriakides, T. R.; Saltzman, W. M. Biodegradation, biocompatibility, and drug delivery in poly(omega-pentadecalactone-co-p-dioxanone) copolyesters. Biomaterials 2011, 32, 6646-6654. doi: 10.1016/j.biomaterials.2011.05.046

    14. [14]

      Bai, Y.; Wang, P. Q.; Bai, W.; Zhang, L. F.; Li, Q.; Xiong, C. D. Miscibility, thermal and mechanical properties of poly(para-dioxanone)/poly(lactic-co-glycolic acid) blends. J. Polym. Environ. 2015, 23, 367-373. doi: 10.1007/s10924-014-0686-3

    15. [15]

      Du, J.; Zhu, T. H.; Yu, H. Y.; Zhu, J. J.; Sun, C. B.; Wang, J. C.; Chen, S. H.; Wang, J. H.; Guo, X. R. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl. Surf. Sci. 2018, 447, 269-278. doi: 10.1016/j.apsusc.2018.03.077

    16. [16]

      Hong, Y.; Ye, S. H.; Pelinescu, A. L.; Wagner, W. R. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity. Biomacromolecules 2012, 13, 3686-3694. doi: 10.1021/bm301158j

    17. [17]

      Guo, R. J.; Ward, C. L.; Davidson, J. M.; Duvall, C. L.; Wenke, J. C.; Guelcher, S. A. A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ. Biomaterials 2015, 54, 21-33. doi: 10.1016/j.biomaterials.2015.03.010

    18. [18]

      Nair, P. A.; Ramesh, P. Electrospun biodegradable calcium containing poly(ester-urethane)urea: Synthesis, fabrication, in vitro degradation, and biocompatibility evaluation. J. Bio. Mater. Res-Part A 2013, 101, 1876-1887.

    19. [19]

      Zhu, T. H.; Yu, K.; Bhutto, M. A.; Guo, X. R.; Shen, W.; Wang, J.; Chen, W. M.; El-Hamshary, H.; Al-Deyab, S. S.; Mo, X. M. Synthesis of RGD-peptide modified polyester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chem. Eng. J. 2017, 315, 177-190. doi: 10.1016/j.cej.2016.12.134

    20. [20]

      Mi, H. Y.; Jing, X.; Yu, E.; Nulty, J. M.; Peng, X. F.; Turng, L. S. Fabrication of triple-layered vascular scaffolds by combining electrospinning, braiding, and thermally induced phase separation. Mater. Lett. 2015, 161, 305-308. doi: 10.1016/j.matlet.2015.08.119

    21. [21]

      Zheng, F. Y.; Wang, S. G.; Wen, S. H.; Shen, M. W.; Zhu, M. F.; Shi, X. Y. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013, 34, 1402-1412. doi: 10.1016/j.biomaterials.2012.10.071

    22. [22]

      Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F.; Wanger, W. R. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32, 3387-3394. doi: 10.1016/j.biomaterials.2011.01.025

    23. [23]

      Xiang, P.; Wang, S. S.; He, M.; Han, Y. H.; Zhou, Z. H.; Chen, D. L.; Li, M.; Ma, L. Q. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Coll. Surf. B. 2018, 163, 19-28. doi: 10.1016/j.colsurfb.2017.12.020

    24. [24]

      Sabitha, M.; Rajetciv, S. Synthesis and characterization of biocompatible tigecycline imbibed electrospun poly epsilon-caprolactone urethane urea fibers. RSC Adv. 2015, 5, 2249-2257. doi: 10.1039/C4RA08458F

    25. [25]

      Song, N. J.; Jiang, X.; Li, J. H.; Pang, Y.; Li, J. S.; Tan, H.; Fu, Q. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chinese J. Polym. Sci. 2013, 31, 1451-1462. doi: 10.1007/s10118-013-1315-7

    26. [26]

      Ho, C. M. B.; Mishra, A.; Lin, P. T. P.; Ng, S. H.; Yeong, W. Y.; Kim, Y. J.; Yoon, Y. J. 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering. Macromol. Biosci. 2017, 17, 1600250. doi: 10.1002/mabi.v17.4

    27. [27]

      Nie, W. C.; Dang, H. C.; Wang, X. L.; Song, F.; Wang, Y. Z. One-step enzymatic synthesis of poly(p-dioxanone-co-butylene-co-succinate) copolyesters with well-defined structure and enhanced degradability. Polymer 2017, 111, 107-114. doi: 10.1016/j.polymer.2017.01.055

    28. [28]

      Jiang, W. L.; Li, L.; Zhang, D.; Huang, S. S.; Jing, Z.; Wu, Y. K.; Zhao, Z. H.; Zhou, S. B. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium. Acta Biomater. 2015, 25, 240-252. doi: 10.1016/j.actbio.2015.07.023

    29. [29]

      Lco, G.; Showalter, A.; Bosze, W.; Gott, S. C.; Kim, B. S.; Rao, M. P.; Myung, N. V.; Nam, J. Size-dependent piezoelectric and mechanical properties of electrospun P(VDF-TrFE) nanofibers for enhanced energy harvesting. J. Mater. Chem. A 2016, 4, 2293-2304. doi: 10.1039/C5TA10423H

    30. [30]

      Lim, D. J.; Sim, M.; Heo, Y.; Jun, H. W.; Park, H. Facile method for fabricating uniformly patterned and porous nanofibrous scaffolds for tissue engineering. Macromol. Res. 2015, 23, 1152-1158. doi: 10.1007/s13233-015-3147-5

    31. [31]

      Yin, N.; Chen, S. Y.; Cao, Y. M.; Wang, H. P.; Wu, Q. K. Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites. Chinese J. Polym. Sci. 2017, 35, 354-364. doi: 10.1007/s10118-017-1903-z

    32. [32]

      Deuber, F.; Mousavi, S.; Federer, L.; Adlhart, C. Amphiphilic nanofiber-based aerogels for selective liquid absorption from electrospun biopolymers. Adv. Mater. Inter. 2017, 4, 1700065. doi: 10.1002/admi.v4.12

    33. [33]

      Sadat-Shojai, M.; Khorasani, M. T.; Jamshidi, A. A new strategy for fabrication of bone scaffolds using electrospun nano-HAp/PHB fibers and protein hydrogels. Chem. Eng. J. 2016, 289, 38-47. doi: 10.1016/j.cej.2015.12.079

    34. [34]

      Hu, J. X.; Cai, X.; Mo, S. B.; Chen, L.; Shen, X. Y.; Tong, H. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering. Chinese J. Polym. Sci. 2015, 33, 1661-1671. doi: 10.1007/s10118-015-1710-3

    35. [35]

      Rezk, A. L.; Unnithan, A. R.; Park, C. H.; Kim, C. S. Rational design of bone extracellular matrix mimicking tri-layered composite nanofibers for bone tissue regeneration. Chem. Eng. J. 2018, 350, 812-823. doi: 10.1016/j.cej.2018.05.185

    36. [36]

      Montgomery, M.; Ahadian, S.; Huyer, L. D.; Lo Rito, M.; Civitarese, R. A.; Vanderlaan, R. D.; Wu, J.; Reis, L. A.; Momen, A.; Akbari, S.; Pahnke, A.; Li, R. K.; Caldarone, C. A.; Radisic, M. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 2017, 16, 1038-+. doi: 10.1038/nmat4956

    37. [37]

      Nachlas, A. L. Y.; Li, S. Y.; Jha, R.; Singh, M.; Xu, C. H.; Davis, M. E. Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitial-like cells. Acta Biomater. 2018, 71, 235-246. doi: 10.1016/j.actbio.2018.02.025

    38. [38]

      Merkle, V. M.; Martin, D.; Hutchinson, M.; Tran, P. L.; Behrens, A.; Hossainy, S.; Sheriff, J.; Bluestein, D.; Wu, X. Y.; Slepian, M. J. Hemocompatibility of poly(vinyl alcohol)-gelatin core-shell electrospun nanofibers: A scaffold for modulating platelet deposition and activation. ACS Appl. Mater. Interfaces 2015, 7, 8302-8312. doi: 10.1021/acsami.5b01671

    39. [39]

      Chen, X.; Wang, J.; An, Q. Z.; Li, D. W.; Liu, P. X.; Zhu, W.; Mo, X. M. Electrospun poly(L-lactic acid-co-epsilon-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Coll. Surf. B 2015, 128, 106-114. doi: 10.1016/j.colsurfb.2015.02.023

    40. [40]

      Anselmo, A. C.; Modery-Pawlowski, C. L.; Menegatti, S.; Kumar, S.; Vogus, D. R.; Tian, L. L.; Chen, M.; Squires, T. M.; Sen Gupta, A.; Mitragotri, S. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano. 2014, 8, 11243-11253. doi: 10.1021/nn503732m

    41. [41]

      Wang, R.; Levi-Polyanchenko, N.; Morykwas, M.; Argenta, L.; Wagner, W. D. Novel nanofiber-based material for endovascular scaffolds. J. Bio. Mater. Res. Part A 2015, 103, 1150-1158. doi: 10.1002/jbm.a.35267

    42. [42]

      Augustine, R.; Dan, P.; Sosnik, A.; Kalarikkal, N.; Tran, N.; Vincent, B.; Thomas, S.; Menu, P.; Rouxel, D. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano. Res. 2017, 10, 3358-3376. doi: 10.1007/s12274-017-1549-8

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1369
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2019-06-01
  • 收稿日期:  2018-12-23
  • 修回日期:  2019-01-19
  • 网络出版日期:  2019-02-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章