Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics

Yu-Jie Wang Su-Ying Yan Zhi-Ping Zhao Zhen-Yu Xi

Citation:  Yu-Jie Wang, Su-Ying Yan, Zhi-Ping Zhao, Zhen-Yu Xi. Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics[J]. Chinese Journal of Polymer Science, 2019, 37(6): 617-626. doi: 10.1007/s10118-019-2219-y shu

Isothermal Crystallization of iPP in Environment-friendly Diluents: Effect of Binary Diluents and Crystallization Temperature on Crystallization Kinetics

English


    1. [1]

      van de Witte, P.; Dijkstra, P. J.; van den Berg, J. W. A.; Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117, 1-31. doi: 10.1016/0376-7388(96)00088-9

    2. [2]

      Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Porous membranes in secondary battery technologies. Chem. Soc. Rev. 2017, 46, 2199-2236. doi: 10.1039/C6CS00823B

    3. [3]

      Cui, Z.; Hassankiadeh, N. T.; Lee, S. Y.; Lee, J. M.; Woo, K. T.; Sanguineti, A.; Arcella, V.; Lee, Y. M.; Drioli, E. Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation. J. Membr. Sci. 2013, 444, 223-236. doi: 10.1016/j.memsci.2013.05.031

    4. [4]

      Liu, M.; Liu, S.; Xu, Z.; Wei, Y.; Yang, H. Formation of microporous polymeric membranes via thermally induced phase separation: A review. Front. Chem. Sci. Eng. 2016, 10, 57-75. doi: 10.1007/s11705-016-1561-7

    5. [5]

      Lin, H. H.; Tang, Y. H.; Liu, T. Y.; Matsuyama, H.; Wang, X. L. Understanding the thermally induced phase separation process via a Maxwell-Stefan model. J. Membr. Sci. 2016, 507, 143-153. doi: 10.1016/j.memsci.2016.01.049

    6. [6]

      Jung, J. T.; Kim, J. F.; Wang, H. H.; di Nicolo, E.; Drioli, E.; Lee, Y. M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250-263. doi: 10.1016/j.memsci.2016.04.069

    7. [7]

      Sawada, S.-i.; Ursino, C.; Galiano, F.; Simone, S.; Drioli, E.; Figoli, A. Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. J. Membr. Sci. 2015, 493, 232-242. doi: 10.1016/j.memsci.2015.07.003

    8. [8]

      Mino, Y.; Ishigami, T.; Kagawa, Y.; Matsuyama, H. Three-dimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions. J. Membr. Sci. 2015, 483, 104-111. doi: 10.1016/j.memsci.2015.02.005

    9. [9]

      Song, S. W.; Torkelson, J. M. Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J. Membr. Sci. 1995, 98, 209-222. doi: 10.1016/0376-7388(94)00189-6

    10. [10]

      Lloyd, D. R.; Kim, S. S.; Kinzer, K. E. Microporous membrane formation via thermally induced phase separation. II. Liquid-liquid phase separation. J. Membr. Sci. 1991, 64, 1-11. doi: 10.1016/0376-7388(91)80073-F

    11. [11]

      Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J. Membr. Sci. 1990, 52, 239-261. doi: 10.1016/S0376-7388(00)85130-3

    12. [12]

      Kinzer, K. E.; Lloyd, D. R. Thermally induced phase separation mechanisms for microporous membrane formation. Polym. Mater. Sci. Eng. 1989, 61, 794-8.

    13. [13]

      Lim, G. B. A.; Kim, S. S.; Ye, Q.; Wang, Y. F.; Lloyd, D. R. Microporous membrane formation via thermally induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J. Membr. Sci. 1991, 64, 31-40. doi: 10.1016/0376-7388(91)80075-H

    14. [14]

      Wang, Y. F.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. IV. Effect of dilution and crystallization temperature on overall crystallization kinetics. Polymer 1993, 34, 4740-4746. doi: 10.1016/0032-3861(93)90711-I

    15. [15]

      Wang, Y. F.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. III. Effect of dilution and crystallization temperature on growth rate. Polymer 1993, 34, 2324-9. doi: 10.1016/0032-3861(93)90816-S

    16. [16]

      Lin, G. B. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. I: Effect of nucleating agent addition on overall crystallization kinetics. Polym. Eng. Sci. 1993, 33, 513-21. doi: 10.1002/pen.760330902

    17. [17]

      Lim, G. B. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene in dotriacontane. II: Effect of nucleating agent addition on growth rate. Polym. Eng. Sci. 1993, 33, 522-8. doi: 10.1002/pen.760330903

    18. [18]

      Alwattari, A. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene-hexamethylbenzene blends: kinetics analysis. Polymer 1998, 39, 1129-1137. doi: 10.1016/S0032-3861(97)00396-0

    19. [19]

      Alwattari, A. A.; Lloyd, D. R. Isothermal crystallization of isotactic polypropylene-hexamethylbenzene blends: crystal morphology. Polymer 1994, 35, 2710-15. doi: 10.1016/0032-3861(94)90297-6

    20. [20]

      Lin, Y. K.; Chen, G.; Yang, J.; Wang, X. L. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination 2009, 236, 8-15. doi: 10.1016/j.desal.2007.10.044

    21. [21]

      Tang, Y. H.; He, Y. D.; Wang, X. L. Effect of adding a second diluent on the membrane formation of polymer/diluent system via thermally induced phase separation: Dissipative particle dynamics simulation and its experimental verification. J. Membr. Sci. 2012, 409-410, 164-172. doi: 10.1016/j.memsci.2012.03.052

    22. [22]

      Park, M. J.; Noh, S. C.; Kim, C. K. Effects of the phase behavior of the diluent mixture on the microstructure of polyethylene membranes formed by thermally induced phase separation process. Ind. Eng. Chem. Res. 2013, 52, 10690-10698. doi: 10.1021/ie4010282

    23. [23]

      Jeon, M. Y.; Kim, C. K. Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure. J. Membr. Sci. 2007, 300, 172-181. doi: 10.1016/j.memsci.2007.05.022

    24. [24]

      Zhou, B.; Tang, Y.; Li, Q.; Lin, Y.; Yu, M.; Xiong, Y.; Wang, X. Preparation of polypropylene microfiltration membranes via thermally induced (solid-liquid or liquid-liquid) phase separation method. J. Appl. Polym. Sci. 2015, 132, 42490-9.

    25. [25]

      Wu, Q. Y.; Wan, L. S.; Xu, Z. K. Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation. J. Membr. Sci. 2012, 409-410, 355-364. doi: 10.1016/j.memsci.2012.04.006

    26. [26]

      Sun, Z.; Yang, Z.; Wang, Z.; Li, C. The role of pre-evaporation in the preparation process of EVOH ultrafiltration membranes via TIPS. J. Membr. Sci. 2018, 563, 238-246. doi: 10.1016/j.memsci.2018.06.003

    27. [27]

      Roh, S. C.; Park, M. J.; Yoo, S. H.; Kim, C. K. Changes in microporous structure of polyethylene membrane fabricated from PE/PTMG/paraffin ternary mixtures. J. Membr. Sci. 2012, 411-412, 201-210. doi: 10.1016/j.memsci.2012.04.032

    28. [28]

      Yang, Z.; Li, P.; Xie, L.; Wang, Z.; Wang, S. C. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination 2006, 192, 168-181. doi: 10.1016/j.desal.2005.10.016

    29. [29]

      McGuire, K. S.; Laxminarayan, A.; Lloyd, D. R. Kinetics of droplet growth in liquid—liquid phase separation of polymer-diluent systems: experimental results. Polymer 1995, 36, 4951-4960. doi: 10.1016/0032-3861(96)81620-X

    30. [30]

      McGuire, K. S.; Laxminarayan, A.; Martula, D. S.; Lloyd, D. R. Kinetics of droplet growth in liquid–liquid phase separation of polymer-diluent systems: Model development. J.Colloid Interface Sci. 1996, 182, 46-58. doi: 10.1006/jcis.1996.0435

    31. [31]

      Matsuyama, H.; Teramoto, M.; Kudari, S.; Kitamura, Y. Effect of diluents on membrane formation via thermally induced phase separation. J. Appl. Polym. Sci. 2001, 82, 169-177. doi: 10.1002/app.1836

    32. [32]

      Wang, Y. J.; Zhao, Z. P.; Xi, Z. Y.; Yan, S. Y. Microporous polypropylene membrane prepared via TIPS using environment-friendly binary diluents and its VMD performance. J. Membr. Sci. 2018, 548, 332-344. doi: 10.1016/j.memsci.2017.11.023

    33. [33]

      Basson, I.; Reynhardt, E. C. An investigation of the structures and molecular dynamics of natural waxes: II. Carnauba wax. J. Phys. D: Appl. Phys. 1988, 21, 1429-33. doi: 10.1088/0022-3727/21/9/017

    34. [34]

      Lawrence, J. F.; Iyengar, J. R.; Page, B. D.; Conacher, H. B. S. Characterization of commercial waxes by high-temperature gas chromatography. J. Chromatogr. 1982, 236, 403-19. doi: 10.1016/S0021-9673(00)84892-X

    35. [35]

      Rodrigues, D. C.; Caceres, C. A.; Ribeiro, H. L.; de Abreu, R. F. A.; Cunha, A. P.; Azeredo, H. M. C. Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocolloids 2014, 38, 147-151. doi: 10.1016/j.foodhyd.2013.12.010

    36. [36]

      Villalobos-Hernandez, J. R.; Mueller-Goymann, C. C. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. Int. J. Pharm. 2006, 322, 161-170. doi: 10.1016/j.ijpharm.2006.05.037

    37. [37]

      Zhang, Y.; Adams, M. J.; Zhang, Z.; Vidoni, O.; Leuenberger, B. H.; Achkar, J. Plasticization of carnauba wax with generally recognized as safe (GRAS) additives. Polymer 2016, 86, 208-219. doi: 10.1016/j.polymer.2016.01.033

    38. [38]

      Lim, J.; Jeong, S.; Oh, I. K.; Lee, S. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT-Food Sci. Technol. 2017, 84, 788-794. doi: 10.1016/j.lwt.2017.06.054

    39. [39]

      Reddy, K. R.; Tashiro, K.; Sakurai, T.; Yamaguchi, N. Isotope effect on the isothermal crystallization behavior of isotactic polypropylene blends between the deuterated and hydrogenated species. Macromolecules 2009, 42, 1672-1678. doi: 10.1021/ma802568c

    40. [40]

      Harron, A. F.; Powell, M. J.; Nunez, A.; Moreau, R. A. Analysis of sorghum wax and carnauba wax by reversed phase liquid chromatography mass spectrometry. Ind. Crops Prod. 2017, 98, 116-129. doi: 10.1016/j.indcrop.2016.09.015

    41. [41]

      Lauritzen Jr, J. I.; Hoffman, J. D. Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J. Appl. Phys. 1973, 44, 4340-4352. doi: 10.1063/1.1661962

    42. [42]

      Patki, R.; Mezghani, K.; Phillips, P. J. Crystallization Kinetics of Polymers. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer New York, New York, 2007, pp 625−640.

    43. [43]

      Hoffman, J. D. Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 1983, 24, 3-26. doi: 10.1016/0032-3861(83)90074-5

    44. [44]

      Janimak, J. J.; Cheng, S. Z. D. Crystallization studies in isotactic polypropylene fractions. J. Polym. Eng. 1991, 10, 21-69.

    45. [45]

      Cheng, S. Z. D.; Janimak, J. J.; Zhang, A.; Cheng, H. N. Regime transitions in fractions of isotactic polypropylene. Macromolecules 1990, 23, 298-303. doi: 10.1021/ma00203a051

    46. [46]

      Clark, E. J.; Hoffman, J. D. Regime III crystallization in polypropylene. Macromolecules 1984, 17, 878-85. doi: 10.1021/ma00134a058

    47. [47]

      Al-Raheil, I. A.; Qudah, A. M.; Al-Share, M. Isotactic polypropylene crystallized from the melt. I. Morphological study. J. Appl. Polym. Sci. 1998, 67, 1259-1265. doi: 10.1002/(SICI)1097-4628(19980214)67:7<1259::AID-APP15>3.0.CO;2-X

    48. [48]

      Szumala, P.; Luty, N. Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids Surf., A 2016, 499, 131-140. doi: 10.1016/j.colsurfa.2016.04.022

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1461
  • HTML全文浏览量:  27
文章相关
  • 发布日期:  2019-06-01
  • 收稿日期:  2018-10-23
  • 修回日期:  2018-12-13
  • 网络出版日期:  2019-02-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章