Tough Biopolymer IPN Hydrogel Fibers by Bienzymatic Crosslinking Approach

Xiao-jiu Liu Ye-min Zhang Xin-song Li

Citation:  Xiao-jiu Liu, Ye-min Zhang, Xin-song Li. Tough Biopolymer IPN Hydrogel Fibers by Bienzymatic Crosslinking Approach[J]. Chinese Journal of Polymer Science, 2015, 33(12): 1741-1749. doi: 10.1007/s10118-015-1717-9 shu

Tough Biopolymer IPN Hydrogel Fibers by Bienzymatic Crosslinking Approach

    通讯作者: Xin-song Li,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China(Nos.51373034 and 51073036).

摘要: In this report, bienzymatic crosslinking approach was applied to prepare biopolymer hydrogel fibers composed of gelatin and chitosan with an interpenetrating polymer network(IPN) structure. The IPN biopolymer hydrogel fibers were prepared by wet spinning while microbial transglutaminase(mTG) catalyzed the formation of one network of gelatin and horseradish peroxidase(HRP) in the presence of H2O2 induced another network of chitosan grafted with phloretic acid(chitosan-PA) intertwining with the former. The mechanical performances of the hydrogel fibers were measured by an electronic single fiber strength tester. It was found that the mechanical properties of the gelatin/chitosan IPN hydrogel fibers had a significant improvement with the increase of the concentration of gelatin and chitosan, and the IPN fiber has the highest tension of 38.6 cN and elongation of 387.2%. Accelerated degradation in the presence of papin indicated that the gelatin/chitosan-PA IPN hydrogel fibers own controllable degradability. In addition, biological evaluation indicated the IPN hydrogel fibers can support cell adhesion and proliferation. Moreover, hand weaving trail showed the knittablity of the IPN hydrogel fibers. Therefore, the gelatin/chitosan IPN hydrogel fibers prepared by bienzymatic crosslinking approach possess excellent biocompatibility and mechanical strength, which may be desirable candidates for engineering tissue scaffolds.

English

  • 
    1. [1]

      Lin, H.Y., Peng, C.W. and Wu, W.W., J. Mater. Sci. Mater. Med., 2014, 25(1):259

    2. [2]

      McCullen, S.D., Haslauer, C.M. and Loboa, E.G., J. Mat. Chem., 2010, 20(40):8776

    3. [3]

      Chen, V.J. and Ma, P.X., Biomaterials, 2004, 25(11):2065

    4. [4]

      Cui, Z.X., Zhao, H.B., Peng, Y.Y., Srithep, Y., Turng, L.S. and Shen, C.Y., Chinese J. Polym. Sci., 2014, 32(7):864

    5. [5]

      Nichol, J.W. and Khademhosseini, A., Soft Matter, 2009, 5(7):1312

    6. [6]

      Dragan, E.S., Cocarta, A.L. and Dinu, M.V., Chem. Eng. J., 2014, 243:572

    7. [7]

      Wen, C., Lu, L.L. and Li, X.S., Macromol. Mater. Eng., 2014, 299(4):504

    8. [8]

      Slaughter, B.V., Khurshid, S.S, Fisher, O.Z., Khademhosseini, A. and Peppas, N.A., Adv. Mater., 2009, 21(32-33):3307

    9. [9]

      Meyer, M., Baltzer, H. and Schwikal, K., Mater. Sci. Eng., C, 2010, 30(8):1266

    10. [10]

      Billiet, T., Vandenhaute, M., Schelfhout, J., Vlierberghe, S.V. and Dubruel, P., Biomaterials, 2012, 33(26):6020

    11. [11]

      Williams, C.G., Malik, A.N., Kim, T.K., Manson, P.N. and Elisseeff, J.H., Biomaterials, 2005, 26(11):1211

    12. [12]

      Van Tomme, S.R., van Steenbergen, M.J., De Smedt, S.C., van Nostrum, C.F. and Hennink, W.E., Biomaterials, 2005, 26(14):2129

    13. [13]

      Hao, J.K. and Weiss, R.A., Polymer, 2013, 54(8):2174

    14. [14]

      Zhang, J.Z., Xiao, C.S., Wang, J.C., Zhuang, X.L. and Chen, X.S., Chinese J. Polym. Sci., 2013, 31(12):1697

    15. [15]

      Zhang, Y.B., Ding, J.X., Xu, W.G., Wu, J., Chang, F., Zhuang, X.L., Chen, X.S. and Wang, J.C., Chinese J. Polym. Sci., 2014, 32(12):1590

    16. [16]

      Song, G.S., Zhang, L., He, C.C., Fang, D.C., Whitten, P.G. and Wang, H.L., Macromolecules, 2013, 46(18):7423

    17. [17]

      Kim, K.S., Park, S.J., Yang, J.A, Jeon, J.H., Bhang, S.H., Kim, B.S. and Hahn, S.K., Acta Biomater., 2011, 7(2):666

    18. [18]

      Jin, R., Lou, B. and Lin, C., Polym. Int., 2013, 62(3):353

    19. [19]

      Lih, E., Lee, J. S., Park, K.M. and Park, K.D., Acta Biomater., 2012, 8(9):3261

    20. [20]

      Tran, N.Q., Joung, Y.K., Lih, E. and Park, K.D., Biomacromolecules, 2011, 12(8):2872

    21. [21]

      Zhang, Y.M., Fan, Z.P., Xu, C., Liu, X.J. and Li, X.S., Eur. Polym. J., 2015, doi: 10.1016/j.eurpolymj.2014.12.038

    22. [22]

      Association for the Advancement of Medical Instrumentation, Biological Evaluation of Medical Devices:Part 5 Tests for In vitro cytotoxicity, AAMI/ISO 10993-5:2009, Arlington, USA, 2009

    23. [23]

      Fuchs, S., Kutscher, M., Hertel, T., Winter, G., Pietzsch, M. and Coester, C., J. Microencapsulation, 2010, 27(8):747

    24. [24]

      Yung, C.W., Wu, L.Q., Tullman, J.A., Payne, G.F., Bentley, W.E. and Barbari, T.A., J. Biomed. Mater. Res., A., 2007, 83(4):1039

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1319
  • HTML全文浏览量:  38
文章相关
  • 发布日期:  2015-12-05
  • 收稿日期:  2015-05-28
  • 修回日期:  2015-06-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章