Optimizing Heavy-duty Anticorrosive Performances of Coating Films Formed by Acrylate-vinylidene Chloride Copolymer Latexes through Twice-painting Technique

Ce Fu Tong-xian Zhang Cheng-qi Ji Fa Cheng Wen-zhu Cui Yu Chen

Citation:  Ce Fu, Tong-xian Zhang, Cheng-qi Ji, Fa Cheng, Wen-zhu Cui, Yu Chen. Optimizing Heavy-duty Anticorrosive Performances of Coating Films Formed by Acrylate-vinylidene Chloride Copolymer Latexes through Twice-painting Technique[J]. Chinese Journal of Polymer Science, 2015, 33(1): 14-22. doi: 10.1007/s10118-015-1570-x shu

Optimizing Heavy-duty Anticorrosive Performances of Coating Films Formed by Acrylate-vinylidene Chloride Copolymer Latexes through Twice-painting Technique

    通讯作者: Yu Chen, chentangyu@yahoo.com
  • 基金项目:

    This work was financially supported by the Program for New Century Excellent Talents in Universities, and the National Natural Science Foundation of China (No. 21074088).

摘要: Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride (VDC) with an acrylate, namely methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA) or 2-ethylhexyl acrylate (EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twice-painting technique was that the acidic latex solution was adjusted to pH 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that (1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion; (2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of salt-spray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.

English

  • 
    1. [1]

      Lai, M.C., Chang, K.C., Yeh, J.M., Liou, S.J., Hsieh, M.F. and Chang, H.S., Eur. Polym. J., 2007, 43: 4219

    2. [2]

      Almeida, E., Santos, D. and Uruchurtu, J., Prog. Org. Coat., 1999, 37: 131

    3. [3]

      Mohamed, H.A., Farag, A.A. and Badran, B.M., J. Appl. Polym. Sci., 2010, 117: 1270

    4. [4]

      Chen, F. and Liu, P., ACS Appl. Mater. Interfaces, 2011, 3: 2694

    5. [5]

      Wang, J., Tang, J. and He, Y., J. Coat. Technol. Res., 2010, 8: 11

    6. [6]

      Bagherzadeh, M.R. and Mousavinejad, T., Prog. Org. Coat., 2012, 74: 589

    7. [7]

      Bagherzadeh, M.R., Mahdavi, F., Ghasemi, M., Shariatpanahi, H. and Faridi, H.R., Prog. Org. Coat., 2010, 68: 319

    8. [8]

      Bagherzadeh, M.R., Daneshvar, A. and Shariatpanahi, H., Surf. Coat. Technol., 2011, 206: 2057

    9. [9]

      Caprari, J.J., Sarli, A.R.D. and Amo, B.d., Pigment Resin Technol., 2000, 29: 16

    10. [10]

      Jackson, M.A., J. Protective Coat. Linings, 1990, 7: 54

    11. [11]

      Li, Y. and Pan, Z., J. Appl. Polym. Sci., 1996, 61: 2307

    12. [12]

      Lee, K.C., El-Aasser, M.S. and Vanderhoff, J.W., J. Appl. Polym. Sci., 1991, 42: 3133

    13. [13]

      Ruckenstein, E. and Li, H., Polymer, 1994, 35: 4343

    14. [14]

      Obi, B.E., DeLassus, P.T., Howell, B.A. and Dangel, B., J. Polym. Sci., Part B: Polym. Phys., 1995, 33: 2019

    15. [15]

      Penzal, E., Haberkorn, H. and Heilig, J.C., Die Angew. Makromol. Chem., 1999, 273: 15

    16. [16]

      Wessing, R.A., Gibbs, D.S., Delassus, P.T., Obi, B.E. and Howell, B.A., Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley Sons, Inc., New York, 1997

    17. [17]

      Hsieh, T.H. and Ho, K.S., J. Polym. Sci., Part A: Polym. Chem., 1999, 37: 3269

    18. [18]

      Hwang, T., Pu, L., Kim, S.W., Oh, Y.S. and Nam, J.D., J. Membr. Sci., 2009, 345: 90

    19. [19]

      Wessling, R.A. In Polymer Monographs; Morawetz, H., (Ed.), Gordon and Breach Science Publishers: New York, 1977, Vol. 5, p. 706

    20. [20]

      Kodani, T., Sakai, H., Okabe, T. and Nomura, M., J. Appl. Polym. Sci., 1998, 69: 565

    21. [21]

      Collins, S., Yoda, K., Anazawa, N. and Birkinshaw, C., Polym. Degrad. Stab., 1999, 66: 87

    22. [22]

      Li, Y., Weng, Z. and Pan, Z., Chinese J. Polym. Sci., 1997, 15(4): 319

    23. [23]

      Julian, G.L., Morgan, T.A. and Stanislawczyk, V., The Bfgoodrich Company, 1994, US Patent 5,344,867

    24. [24]

      Burgess, A.J. and Gardner, D.L., Imperial Chemical Industries Limited, 1982, US Patent 4,341,679

    25. [25]

      Fu, C., Qin, H.W., Ben, H.J., Han, J., Cui, W.Z., Cheng, F. and Chen, Y., J. Appl. Polym. Sci., 2014, 131: 40192

    26. [26]

      Fu, C., Zhang, T.X., Cheng, F., Cui, W.Z. and Chen, Y., Ind. Eng. Chem. Res., 2014, 53: 4534

    27. [27]

      ASTM-B117-07. ASTM International: West Conshohocken, PA, USA, 2007

    28. [28]

      ASTM-D3359-08. ASTM International: West Conshohocken, PA, USA, 2008

    29. [29]

      ASTM-D714-02. ASTM International: West Conshohocken, PA, USA, 2002

    30. [30]

      ASTM-D1654-08. ASTM International: West Conshohocken, PA, USA, 2008

    31. [31]

      Howell, B.A., J. Therm. Anal. Calorim., 2006, 83: 53

    32. [32]

      Hsieh, T.H. and Ho, K.S., J. Polym. Sci., Part A: Polym. Chem., 1999, 37: 2035

    33. [33]

      DiMarzio, E.A. and Gibbs, J.H., J. Polym. Sci., 1959, 40: 121

    34. [34]

      Reimschuessel, H.K., J. Polym. Sci., Polym. Chem., 1979, 17: 2447

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1350
  • HTML全文浏览量:  42
文章相关
  • 发布日期:  2015-01-05
  • 收稿日期:  2014-02-10
  • 修回日期:  2014-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章