Synthesis and Characterization of Carborane Bisphenol Resol Phenolic Resins with Ultrahigh Char Yield

Shi-cheng Qi Guo Han Hong-rui Wang Ning Li Xiao-a Zhang Sheng-ling Jiang Ya-fei Lu

Citation:  Shi-cheng Qi, Guo Han, Hong-rui Wang, Ning Li, Xiao-a Zhang, Sheng-ling Jiang, Ya-fei Lu. Synthesis and Characterization of Carborane Bisphenol Resol Phenolic Resins with Ultrahigh Char Yield[J]. Chinese Journal of Polymer Science, 2015, 33(11): 1606-1617. doi: 10.1007/s10118-015-1712-1 shu

Synthesis and Characterization of Carborane Bisphenol Resol Phenolic Resins with Ultrahigh Char Yield

    通讯作者: Xiao-a Zhang, saladzhang@163.com
  • 基金项目:

    This work was financially supported by the Fundamental Research Funds for the Central Universities (No. JD-1512).

摘要: Two carborane-containing resol phenolic resins (P1 and P2) with high boron content were synthesized via the reaction of carborane bisphenols (1 and 2) with formaldehyde in the presence of alkaline. HRMS results indicate that P1 is mainly composed of hydroxymethylated o-carborane bisphenols, the Mw of which was restrained around 500 due to the strong steric hindrance of o-carborane bisphenol. In contrast, the molecular weight of P2 was well regulated under various reaction conditions. The obtained resins were characterized with spectroscopic techniques including FTIR, 1H-NMR, 13C-NMR, and 11B-NMR, which gave satisfactory results. TGA studies show that P2 shows char yield of 88.9% and 92.9% at 900 ℃ under nitrogen and air respectively. The imported carborane cage endows phenolic resin with ultrahigh char yield. Particularly, the char yield of the obtained carborane-containing phenolic resin under air is higher than that under nitrogen. FTIR and XRD confirm that the carborane cage could react with oxygen to form B2O3 at elevated temperatures, which postpones the thermal decomposition of phenolic resin and accounts for the high char yield.

English

  • 
    1. [1]

      Pilato, L., Phenolic resins: a century of progress, New York, Springer, 2010, p. 155

    2. [2]

      Pilato, L., React. Funct. Polym., 2012, 73: 270

    3. [3]

      Hirano, K. and Asami, M., React. Funct. Polym., 2013, 73: 256

    4. [4]

      Nair, C.P.R., Prog. Polym. Sci., 2004, 29: 401

    5. [5]

      Moroz, S.A., Gorbachev, S.G., and Chekina, O.V., Plast. Massy, 1987, 8: 34

    6. [6]

      Sunitha, K., Kumar, K.S.S., Mathew, D. and Nair, C.P.R., Mater. Lett., 2013, 99: 101

    7. [7]

      Ning, X. and Ishida, H., J. Polym. Sci., Part A: Polym. Chem., 1994, 32: 1121

    8. [8]

      Agag, T., Geiger, S., Alhassan, S.M., Qutubuddin, S. and Ishida, H., Macromolecules, 2010, 43: 7122

    9. [9]

      Hanbeyoglu, B, Kiskan, B. and Yagci, Y., Macromolecules, 2013, 46: 8434

    10. [10]

      Gao, J., Liu, Y. and Yang, L., Polym. Degrad. Stab., 1999, 63: 19

    11. [11]

      Abdalla, M., Ludwick, A. and Mitchell, T., Polymer, 2003, 44: 7353

    12. [12]

      Gao, J., Xia, L. and Liu, Y., Polym. Degrad. Stab., 2004, 83: 71

    13. [13]

      Wang, D.C., Chang, G.W. and Chen, Y., Polym. Degrad. Stab., 2008, 93: 125

    14. [14]

      Liu, L. and Ye, Z., Polym. Degrad. Stab., 2009, 94: 1972

    15. [15]

      Abdalla, M.O., Ludwick, A. and Mitchell, T., Polymer, 2003, 44: 7353

    16. [16]

      Qiu, J., Wang, G.J. and Feng, Y.B., Journal of Tongji University (Natural Science), 2007, 35(3): 381

    17. [17]

      Grimes, R.N., Carboranes second edition, New York, Elsevier Inc., 2011, p. 301

    18. [18]

      Peters, E.N., Ind. Eng. Chem. Prod. Res. Dev., 1984, 23: 28

    19. [19]

      Patel, M. and Swain, A.C., Polym. Degrad. Stab., 2004, 83: 539

    20. [20]

      Patel, M., Swain, A.C., Cunningham, J.L., Maxwell, R.S. and Chinn, S.C., Polym. Degrad. Stab., 2006, 91: 548

    21. [21]

      Jiang, Y.M., Lv, Y.F., Li, Y. and Qi, S.C., Polym. Mater. Sci. Eng., 2014, 30(9): 1

    22. [22]

      Vinogradova, S.V., Valetskii, P.M. and Kabachii, Y.A., Russian Chem. Rev., 1995, 64(4): 365

    23. [23]

      Antipov, E.M., Vasnev, V.A., Stamm, M., Fischer, E.W. and Plate, N.A., Macromol. Rapid Commun., 1999, 20: 185

    24. [24]

      Qi, S.C., Wang, Y.S., Han, G., Yang, Z., Zhang, X.A., Jiang, S.L. and Lv, Y.F., Acta Polymerica Sinica (in Chinese), 2015, (8): 921

    25. [25]

      Chen, S., Zhao, J., Chen, G. and Huang, P.C., Acta Polymerica Sinica (in Chinese), 2011, (12): 1368

    26. [26]

      Qi, S.L., Wang, Y.S., Wang, H.R., Zhang, X.A., Jiang, S.L. and Lv, Y.F., J. Aeron. Mater., 2014, 40(1): 79

    27. [27]

      Wang, M., Wei, L. and Zhao, T., Eur. Polym. J., 2005, 41: 903

    28. [28]

      Ma, Y., Zhang, W., Wang, C., Xu, Y. and Chu, F., J. Appl. Polym. Sci., 2013, 129(6): 3096

    29. [29]

      Abramova, T.M., Alekseyeva, S.G., Valetskii, P.M., Golubenkova, I.M., Slonim, I.Y., Urman, Y.G. and Shabadash, A.N., Polym. Sci. USSR., 1980, 22(7): 1795

    30. [30]

      Riccardi, C.C., Aierbe, G.A., Echeverria, J.M. and Mondragon, I., Polymer, 2002, 43: 1631

    31. [31]

      Causey, P.W., Besanger, T.R. and Valliant, J.F., J. Med. Chem., 2008, 51: 2833

    32. [32]

      Wang, S., Jing, X., Wang, Y. and Si, J., Polym. Degrad. Stab., 2014, 99: 1

    33. [33]

      Fergus, J.W. and Worrell, W.L., Carbon, 1995, 33: 537

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1346
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2015-11-05
  • 收稿日期:  2015-04-23
  • 修回日期:  2015-06-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章