Effects of Composition on Microstructure and Crystallization Behavior for Impact Polypropylene Copolymer Investigated by Restructuring the Complex Core-Shell Dispersed Particles in Ternary Blends

Bi-wei Qiu Feng Chen Yong-gang Shangguan Yu Lin Qiang Zheng

Citation:  Bi-wei Qiu, Feng Chen, Yong-gang Shangguan, Yu Lin, Qiang Zheng. Effects of Composition on Microstructure and Crystallization Behavior for Impact Polypropylene Copolymer Investigated by Restructuring the Complex Core-Shell Dispersed Particles in Ternary Blends[J]. Chinese Journal of Polymer Science, 2015, 33(1): 95-108. doi: 10.1007/s10118-015-1556-8 shu

Effects of Composition on Microstructure and Crystallization Behavior for Impact Polypropylene Copolymer Investigated by Restructuring the Complex Core-Shell Dispersed Particles in Ternary Blends

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 51173157 and 51173165), the Fundamental Research Funds for the Central Universities (No. 2013QNA4048) and Nature Science Foundation of Zhejiang Province (No. Y4100314).

摘要: A series of ternary blends of polypropylene/ethylene-propylene random copolymer/ethylene-propylene segmented copolymer (HPP/EPR/EbP) whose microstructures are similar to those of impact polypropylene copolymer (IPC) were prepared in order to systematically investigate the effects of composition on microstructure and crystallization behavior of IPC. The observation of primary phase morphology reveals that the dispersed phase with core-shell structure could be rebuilt in certain composition and excessive EPR leads to a bicontinuous phase structure in ternary blends. After undergoing same quiescent crystallization including isothermal and non-isothermal crystallization, these blend samples exhibit special composition-dependent melting behavior, i.e., the melting point increases markedly with the increase of EPR content until it turns down at a critical content (about 30 wt%). The crystallization behavior is mainly ascribed to the different nucleation abilities. It is suggested that although the compatibility between EPR and HPP components becomes worse with the increase of EPR content due to the increased interfacial area and the decreased concentration of EbP, higher EPR content in the blend facilitates to heterogeneous nucleation except for the appearance of obvious bicontinuous phase structure.

English

  • 
    1. [1]

      Zhu, H.J., Monrabal, B., Han, C.C. and Wang, D.J., Macromolecules, 2008, 41(3): 826

    2. [2]

      Nitta, K., Kawada, T., Yamahiro, M., Mori, H. and Terano, M., Polymer, 2000, 41(18): 6765

    3. [3]

      Tian, Y.F., Song, S.J., Feng, J.C. and Yi, J.J., Mater. Chem. Phys., 2012, 133: 893

    4. [4]

      Tan, H.S., Li, L., Chen, Z.N., Song, Y.H. and Zheng, Q., Polymer, 2005, 46(10): 3522

    5. [5]

      Zhang, C.H., Shangguan, Y.G., Chen, R.F., Wu, Y.Z., Chen, F., Zheng, Q. and Hu, G.H., Polymer, 2010, 51(21): 4969

    6. [6]

      Shangguan, Y.G., Zhang, C.H., Chen, R.F. and Zheng, Q.A., J. Appl. Polym. Sci., 2011, 119(3): 1560

    7. [7]

      Luo, F., Xu, C., Wang, K., Deng, H., Chen, F. and Fu, Q., Polymer, 2012, 53(8): 1783

    8. [8]

      Chen, R.F., Shangguan, Y.G., Zhang, C.H., Chen, F., Harkin-Jones, E. and Zheng, Q., Polymer, 2011, 52(13): 2956

    9. [9]

      Lin, Y., Chen, H.B., Chan, C.M. and Wu, J.S., Macromolecules, 2008, 41(23): 9204

    10. [10]

      Kojima, T., Kikuchi, Y. and Inoue, T., Polym. Eng. Sci., 1992, 32(24): 1863

    11. [11]

      Wu, S.H., Polym. Eng. Sci., 1990, 30(13): 753

    12. [12]

      Zheng, Q., Shangguan, Y.G. and Tao, L.Y., J. Appl. Polym. Sci., 2007, 106(1): 448

    13. [13]

      Shangguan, Y.G., Song, Y.H. and Zheng, Q., Polymer, 2007, 48(15): 4567

    14. [14]

      Kock, C., Gahleitner, M., Schausberger, A. and Ingolic, E., J. Appl. Polym. Sci., 2013, 128(3): 1484

    15. [15]

      Fu, Z.S., Tu, S.T. and Fan, Z.Q., Ind. Eng. Chem. Res., 2013, 52(17): 5887

    16. [16]

      Martuscelli, E., Pracella, M. and Wang, P.Y., Polymer, 1984, 25(8): 1097

    17. [17]

      Chen, J.Y., Cao, Y. and Li, H.L., J. Appl. Polym. Sci., 2010, 116(2): 1172

    18. [18]

      Martuscelli, E., Silvestre, C. and Abate, G., Polymer, 1982, 23(2): 229

    19. [19]

      Arroyo, M., Zitzumbo, R., and Avalos, F., Polymer, 2000, 41(16): 6351

    20. [20]

      Zheng, Q., Shangguan, Y.G., Yan, S.K., Song, Y.H., Peng, M. and Zhang, Q.B., Polymer, 2005, 46(9): 3163

    21. [21]

      Liu, Y.L., Xu, J.T., Dong, Q., Fu, Z.S. and Fan, Z.Q., Polym. Plast. Technol., 2009, 48(4): 333

    22. [22]

      Jin, J., Du, J., Chen, H.Y. and Han, C.C., Polymer, 2011, 52(26): 6161

    23. [23]

      Svoboda, P., Svobodova, D., Chiba, T. and Inoue, T., Eur. Polym. J., 2008, 44(2): 329

    24. [24]

      Tsuburaya, M. and Saito, H., Polymer, 2004, 45(3): 1027

    25. [25]

      Zhang, X.H., Man, X.K., Han, C.C. and Yan, D.D., Polymer, 2008, 49(9): 2368

    26. [26]

      Zhang, X.H., Wang, Z.G., Dong, X., Wang, D.J. and Han, C.C., J. Chem. Phys., 2006, 125(2): 024907

    27. [27]

      George, S., Varughese, K.T. and Thomas, S., Polymer, 2000, 41(14): 5485

    28. [28]

      Qiu, B.W., Chen, F., Lin, Y., Shangguan, Y.G. and Zheng, Q., Polymer, 2014, 55(23): 6176

    29. [29]

      Mller, A.J. and Arnal, M.L., Prog. Polym. Sci., 2005, 30(5): 559

    30. [30]

      Hansen, C.M., Prod. Res. Des., 1969, 8(1): 2

    31. [31]

      Song, S.J., Feng, J.C., Wu, P.Y. and Yang, Y.L., Macromolecules, 2009, 42(18): 7067

    32. [32]

      Chen, Y., Chen, Y., Chen, W. and Yang, D., J. Appl. Polym. Sci., 2008, 108(4): 2379

    33. [33]

      Thomson W., Philos. Mag. Ser., 1871,4(42): 448

    34. [34]

      Yamada, K., Hikosaka, M., Toda, A., Yamazaki, S. and Tagashira, K., Macromolecules, 2003, 36(13): 4790

    35. [35]

      Yamada, K., Hikosaka, M., Toda, A., Yamazaki, S. and Tagashira, K., Macromolecules, 2003, 36(13): 4802

    36. [36]

      Hhne, G.W.H., Polymer, 2002, 43(17): 4689

    37. [37]

      Cho, T.Y., Heck, B. and Strobl, G., Colloid Polym. Sci., 2004, 282(8): 825

    38. [38]

      Romanos, N.A. and Theodorou, D.N., Macromolecules, 2010, 43(12): 5455

    39. [39]

      Chen, J.H., Zhong, J.C., Cai, Y.H., Su, W.B. and Yang, Y.B., Polymer, 2007, 48(10): 2946

    40. [40]

      Hikosaka, M., Amano, K., Rastogi, S. and Keller, A., J. Mater. Sci., 2000, 35(20): 5157

    41. [41]

      Liu, Y.X., Li, J.F., Zhu, D.S., Chen, E.Q. and Zhang, H.D., Macromolecules, 2009, 42(8): 2886

    42. [42]

      Nurkhamidah, S. and Woo, E.M., Macromolecules, 2012, 45(7): 3094

    43. [43]

      Mezghani, K., Campbell, R.A. and Phillips, P.J., Macromolecules, 1994, 27(4): 997

    44. [44]

      Kakudo M. and Kasai M., X-ray diffraction by polymers, Kodansha, Tokyo, 1972, p. 46

    45. [45]

      Hu. J.C., X-ray Diffraction by Macromolecules, Science Press, Bei Jing, 2003, p. 150

    46. [46]

      Scherrer P, Gttinger Nachrichten Math Phys, 1918, p. 98

    47. [47]

      Wang, L.X. and Huang, B.T., J. Polym. Sci. Polym. Phys., 1990, 28(6): 937

    48. [48]

      Shangguan Y.G., Zheng, Q. and Peng M., Acta Polymerica Sinica (in Chinese), 2005, (3): 389

    49. [49]

      Hoffman, J., Davis, G.T. and Lauritzen, J.J., The Rate of Crystallization of Linear Polymers with Chain Folding In: Hannay, N.B., editor. Treatise on Solid State Chemistry: Springer US, 1976, p. 497

    50. [50]

      Clark, E.J. and Hoffman, J.D., Macromolecules, 1984, 17(4): 878

    51. [51]

      Xu, J.N., Srinivas, S., Marand, H., and Agarwal, P., Macromolecules, 1998, 31(23): 8230

    52. [52]

      Hu, W.B., Frenkel, D. and Mathot, V.B.F., Macromolecules, 2003, 36(21): 8178

    53. [53]

      Wunderlich, B., Okazaki, I., Ishikiriyama, K. and Boller, A., Thermochim. Acta, 1998, 324(1-2): 77

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1404
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2015-01-05
  • 收稿日期:  2014-04-03
  • 修回日期:  2014-07-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章