调控离子传输的电化学分析研究进展

高铁男 熊天逸 张斯亮 陈明丽 王建华 毛兰群 于萍

引用本文: 高铁男, 熊天逸, 张斯亮, 陈明丽, 王建华, 毛兰群, 于萍. 调控离子传输的电化学分析研究进展[J]. 分析化学, 2021, 49(6): 867-880. doi: 10.19756/j.issn.0253-3820.211261 shu
Citation:  GAO Tie-Nan,  XIONG Tian-Yi,  ZHANG Si-Liang,  CHEN Ming-Li,  WANG Jian-Hua,  MAO Lan-Qun,  YU Ping. Advances in Electrochemical Analysis Methods Based on Regulation of Ion Transport[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 867-880. doi: 10.19756/j.issn.0253-3820.211261 shu

调控离子传输的电化学分析研究进展

    通讯作者: 陈明丽,E-mail:chenml@mail.neu.edu.cn; 于萍,E-mail:yuping@iccas.ac.cn
  • 基金项目:

    北京市自然科学基金项目(No.JQ19009)、国家自然科学基金项目(Nos.21775151,22074149,21790053,21790390,21790391)和国家重点研发项目(No.2018YFE0200800)资助。

摘要: 自19世纪50年代库尔特计数器发明以来,随着单通道电流记录技术及纳米微加工技术的日趋成熟,基于微纳孔道的传感技术逐渐发展成为一种新兴的传感检测平台,因其具有简单、快速、免标记的优势,以及高灵敏度和多功能性而受到广泛的关注。近二十年来,随着研究者对限域空间的离子传输行为的研究以及基于调控固态纳米孔内的离子传输的传感技术的发展,推动了该学科的迅速发展。本文主要从探究离子传输基础行为和调控限域空间内离子传输的分析方法两个方面,对近年来调控固态微纳米孔道中离子传输的电化学分析的原理和方法的研究进展进行了综述。

English


    1. [1]

      ZHANG D, WANG P, LIU G L. Energy Fuels, 2018, 32(6): 7210-7219.

    2. [2]

      XU H Y, ZHANG M D, ZHANG H X, ALPADI K, WANG L N, LI R, QIAO J. The Innovation, 2021, 2(1): 100091.

    3. [3]

      LU Z H, PENG Z, LIU C, WANG Z H, WANG Y K, JIAO X, LI J, SHEN L. The Innovation, 2020, 1(2): 100041.

    4. [4]

      FENG M, PAN Y, KONG R, SHU S. The Innovation, 2020, 1(2): 100032.

    5. [5]

      ELLIS D A, MARTIN J W, MUIR D C G, MABURY SCOTT A. Anal. Chem., 2000, 72(4): 726-731.

    6. [6]

      FAN L Z. The Innovation, 2021, 2(1): 100073.

    7. [7]

      DEAMER D W, ORO J. Biosystems, 1980, 12(3-4): 167-175.

    8. [8]

      NEHER E, SAKMANN B. Nature, 1976, 260(5554): 799-802.

    9. [9]

      KASIANOWICZ J J, BRANDIN E, BRANTON D, DEAMER D W. Proc. Natl. Acad. Sci. U.S.A., 1996, 93(24): 13770-13773.

    10. [10]

      HAYWOOD D G, SAHAS A, BAKER L A, JACOBSON S C. Anal. Chem., 2015, 87(1): 172-187.

    11. [11]

      WEI C, BARD A J, FELDBERG S W. Anal. Chem., 1997, 69(22): 4627-4633.

    12. [12]

      LIN C Y, COMBS C, SU Y S, YEH L H, SIWY Z S. J. Am. Chem. Soc., 2019, 141(8): 3691-3698.

    13. [13]

      ZHANG S Q, SUN T, WANG J H. Microchim. Acta, 2015, 182(7-8): 1387-1393.

    14. [14]

      PLETT T S, CAI W J, LE T M, VLASSIOUK I V, PENNER R M, SIWY Z S. J. Phys. Chem. C, 2017, 121(11): 6170-6176.

    15. [15]

      WOERMANN D. Phys. Chem. Chem. Phys., 2003, 5(9): 1853-1858.

    16. [16]

      SIWY Z S, HEINS E, HARRELL C C, KOHLI P, MARTIN C R. J. Am. Chem. Soc., 2004, 126(35): 10850-10851.

    17. [17]

      RAMIREZ P, APEL P Y, CERVERA J, MAFE S. Nanotechnology, 2008, 19(31): 315707.

    18. [18]

      CHENG L J, GUO L J. Nano Lett., 2007, 7(10): 3165-3171.

    19. [19]

      APEL P Y, BLONSKAYA I V, ORELOVITCH O L, RAMIREZ P, SARTOWSKA B A. Nanotechnology, 2011, 22(17): 175302.

    20. [20]

      LIU S J, DONG Y T, ZHAO W B, XIE X, JI T R, YIN X H, LIU Y, LIANG Z W, MOMOTENKO D, LIANG D H, GIRAULT H H, SHAO Y H. Anal. Chem., 2012, 84(13): 5565-5573.

    21. [21]

      SIWY Z S. Adv. Funct. Mater., 2006, 16(6): 735-746.

    22. [22]

      JIANG Y N, FENG Y P, SU J J, NIE J X, CAO L X, MAO L Q, JIANG L, GUO W. J. Am. Chem. Soc., 2017, 139(51): 18739-18746.

    23. [23]

      HE Y, GILLESPIE D, BODA D, VLASSIOUK I, EISENBERG R S, SIWY Z S. J. Am. Chem. Soc., 2009, 131(14): 5194-5202.

    24. [24]

      HE X L, ZHANG K L, LIU Y, WU F, YU P, MAO L Q. Angew. Chem., Int. Ed., 2018, 57(17): 4590-4593.

    25. [25]

      PEREZ M G, ALBESA A G, TRAUTMANN C, TOIMIL M M E, AZZARONI O. Chem. Sci., 2017, 8(2): 890-913.

    26. [26]

      WHITE H S, BUND A. Langmuir, 2008, 24(5): 2212-2218.

    27. [27]

      HE X L, ZHANG K L, LI T, JIANG Y N, YU P, MAO L Q. J. Am. Chem. Soc., 2017, 139(4): 1396-1399.

    28. [28]

      POGGIOLI A R, SIRIA A, BOCQUET L. J. Phys. Chem. B, 2019, 123(5): 1171-1185.

    29. [29]

      GUERRETTE J P, ZHANG B. J. Am. Chem. Soc., 2010, 132(48): 17088-17091.

    30. [30]

      MOMOTENKO D, GIRAULT H H. J. Am. Chem. Soc., 2011, 133(37): 14496-14499.

    31. [31]

      JUBIN L, POGGIOLI A, SIRIA A, BOCQUET L. Proc. Natl. Acad. Sci. U.S.A., 2018, 115(16): 4063-4068.

    32. [32]

      XIONG T Y, ZHANG K L, JIANG Y N, YU P, MAO L Q. Sci. China Chem., 2019, 62: 1346-1359.

    33. [33]

      SIWY Z S, POWELL M R, KALMAN E, ASTUMIAN R D, EISENBERG R S. Nano Lett., 2006, 6(3): 473-477.

    34. [34]

      LUO L, HOLDEN D A, LAN W J, WHITE H S. ACS Nano, 2012, 6(7): 6507-6514.

    35. [35]

      LUO L, HOLDEN D A, WHITE H S. ACS Nano, 2014, 8(3): 3023-3030.

    36. [36]

      LIN C Y, WONG P H, WANG P H, SIWY Z S, YEH L H. ACS Appl. Mater. Interfaces, 2020, 12(2): 3198-3204.

    37. [37]

      POWELL M R, SULLIVAN M, VLASSIOUK I, CONSTANTIN D, SUDRE O, MARTENS C C, EISENBERG R S, SIWY Z S. Nat. Nanotechnol., 2008, 3(1): 51-57.

    38. [38]

      ACAR E T, HINKLE P, SIWY Z S. J. Phys. Chem. C, 2018, 122(6): 3648-3654.

    39. [39]

      HYLAND B, SIWY Z S, MARTENS C C. J. Phys. Chem. Lett., 2015, 6(10): 1800–1806.

    40. [40]

      INNES L, POWELL M R, VLASSIOUK I, MARTENS C, SIWY Z S. J. Phys. Chem. C, 2010, 114(18): 8126-8134.

    41. [41]

      VILOZNY B, ACTIS P, SEGER R A, POURMAND N. ACS Nano, 2011, 5(4): 3191-3197.

    42. [42]

      WANG J, FANG R C, HOU J, ZHANG H C, TIAN Y, WANG H T, JIANG L. ACS Nano, 2017, 11(3): 3022-3029.

    43. [43]

      ZHAO C, LU J, HOU J, LI X Y, JIANG L, WANG H T, ZHANG H C. Adv. Funct. Mater., 2019, 29(6): 1806416.

    44. [44]

      COULTER W H. U.S. Patent, 2,656,508[P]. 1953-10-20.

    45. [45]

      LIU Y, XU C, YU P, CHEN X W, WANG J H, MAO L Q. ChemElectroChem., 2018, 5(20): 2954-2962.

    46. [46]

      MURRAY R W. Chem. Rev., 2008, 108(7): 2688-2720.

    47. [47]

      KOZAK D, ANDERSON W, VOGEL R, CHEN S, ANTAW F, TRAU M. ACS Nano, 2012, 6(8): 6990-6997.

    48. [48]

      ROBERTS G S, YUA S, ZENG Q L, CHAN L C, ANDERSON W, COLBY A H, GRINSTAFF M W, REID S, VOGEL R. Biosens. Bioelectron., 2012, 31(1): 17-25.

    49. [49]

      FENG J D, LIU K, GRAF M, DUMCENCO D, KIS A, DI VENTRA M, RADENOVIC A. Nat. Mater., 2016, 15(8): 850-855.

    50. [50]

      ITO T, SUN L, CROOKS R M. Anal. Chem., 2003, 75(10): 2399-2406.

    51. [51]

      ITO T, SUN L, BEVAN M A, CROOKS R M. Langmuir, 2004, 20(16): 6940-6945.

    52. [52]

      ITO T, SUN L, HENRIQUEZ R R, CROOKS R M. Acc. Chem. Res., 2005, 38(8): 687-687.

    53. [53]

      LAN W J, HOLDEN D A, ZHANG B, WHITE H S. Anal. Chem, 2011, 83(10): 3840-3847.

    54. [54]

      PETROSSIAN L, WILK S J, JOSHI P, GOODNICK S M, THORNTON T J. J. Phys.: Conf. Ser., 2008, 109: 012028.

    55. [55]

      FRAIKIN J L, TEESALU T, MCKENNEY C M, RUOSLAHTI E, CLELAND A N. Nat. Nanotechnol., 2011, 6(5): 308-313.

    56. [56]

      TSUTSUI M, HONGO S, HE Y H, TANIGUCHI M, GEMMA N, KAWAI T. ACS Nano, 2012, 6(4): 3499-3505.

    57. [57]

      TSUTSUI M, MAEDA Y, HE Y H, HONGO S, RYUZAKI S, KAWANO S, KAWAI T, TANIGUCHI M. Appl. Phys. Lett., 2013, 103(1): 013108.

    58. [58]

      LAN W J, KUBEIL C, XIONG J W, BUND A, WHITE H S. J. Phys. Chem. C, 2014, 118(5): 2726-2734.

    59. [59]

      LAN W J, HOLDEN D A, WHITE H S. J. Am. Chem. Soc., 2011, 133(34): 13300-13303.

    60. [60]

      ARJMANDI N, VAN ROY W, LAGAE L, BORGHS G. Anal. Chem., 2012, 84(20): 8490-8496.

    61. [61]

      OHSHIMA H J. Colloid Interface Sci., 1996, 179(2): 431-438.

    62. [62]

      DAVENPORT M, HEALY K, PEVARNIK M, TESLICH N, CABRINI S, MORRISON A P, SIWY Z S, LETANT S E. ACS Nano, 2012, 6(9): 8366-8380.

    63. [63]

      LAN W J, HOLDEN D A, LIU J, WHITE H S. J. Phys. Chem. C, 2011, 115(38): 18445-18452.

    64. [64]

      ROBERTS G S, KOZAK D, ANDERSON W, BROOM M F, VOGEL R, TRAU M. Small, 2010, 6(23): 2653-2658.

    65. [65]

      NOURI R, TANG Z F, GUAN W H. ACS Sens., 2019, 4(11): 3007-3013.

    66. [66]

      PEVARNIK M, SCHIEL M, YOSHIMATSU K, VLASSIOUK I V, KWON J S, SHEA K J, SIWY Z S. ACS Nano, 2013, 7(4): 3720-3728.

    67. [67]

      HOLDEN D A, HENDRICKSON G, LYON L A, WHITE H S. J. Phys. Chem. C, 2011, 115(7): 2999-3004.

    68. [68]

      HOLDEN D A, HENDRICKSON G R, LAN W J, LYON L A, WHITE H S. Soft Matter, 2011, 7(18): 8035-8040.

    69. [69]

      DARVISH A, GOYAL G, ANEJA R, SUNDARAM R V, LEE K, AHN C W, KIM K B, VLAHOVSKA P M, KIM M J. Nanoscale., 2016, 8(30): 14420-14431.

    70. [70]

      GOYAL G, DARVISH A, KIM M J. Analyst, 2015, 140(14): 4865-4873.

    71. [71]

      HOLDEN D A, WATKINS J J, WHITE H S. Langmuir, 2012, 28(19): 7572-7577.

    72. [72]

      GUNDERSON C G, PENG Z Y, ZHANG B. Langmuir, 2018, 34(8): 2699-2707.

    73. [73]

      LIU Y, XU C, CHEN X W, WANG J H, YU P, MAO L Q. Electrochem. Commun., 2018, 89: 38-42.

    74. [74]

      PLATT M, WILLMOTT G R, LEE G U. Small, 2012, 8(15): 2436-2444.

    75. [75]

      PLESA C, VERSCHUEREN D, PUD S, VAN D T J, RUITENBERG J W, WITTEVEEN M J, JONSSON M P, GROSBERG A Y, RABIN Y, DEKKER C. Nat. Nanotechnol., 2016, 11(12): 1093-1097.

    76. [76]

      LI J, STEIN D, MCMULLAN C, BRANTON D, AZIZ M J, GOLOVCHENKO J A. Nature, 2001, 412(6843): 166-169.

    77. [77]

      TALAGA D S, LI J L. J. Am. Chem. Soc., 2013, 135(35): 13220-13220.

    78. [78]

      FIRNKES M, PEDONE D, KNEZEVIC J, DOBLINGER M, RANT U. Nano Lett., 2010, 10(6): 2162-2167.

    79. [79]

      ARIMA A, HARLISA I H, YOSHIDA T, TSUTSUI M, TANAKA M, YOKOTA K, TONOMURA W, YASUDA J, TANIGUCHI M, WASHIO T, OKOCHI M, KAWAI T. J. Am. Chem. Soc., 2018, 140(48): 16834-16841.

    80. [80]

      ARIMA A, TSUTSUI M, YOSHIDA T, TATEMATSU K, YAMAZAKI T, YOKOTA K, KURODA S, WASHIO T, BABA Y, KAWAI T. ACS Sens., 2020, 5(11): 3398-3403.

    81. [81]

      LI T, HE X L, ZHANG K L, WANG K, YU P, MAO L Q. Chem Sci., 2016, 7(10): 6365-6368.

    82. [82]

      ZHOU Y, WANG D D, LI C P, HU P, JIN Y D. Anal. Chem., 2019, 91(12): 7648-7653.

    83. [83]

      LIU Y, XU C, GAO T N, CHEN X W, WANG J H, YU P, MAO L Q. ACS Sens., 2020, 5(8): 2351-2358.

    84. [84]

      YI W, XU C, XIONG T Y, GAO T N, YU P, HE X H, MAO L Q. Electrochem. Commun., 2020, 111: 106666.

    85. [85]

      GAO T N, GAO X Y, XU C, WANG M L, CHEN M L, WANG J H, MA F R, YU P, MAO L Q. Anal. Chem., 2021, 93(5): 2942-2949.

    86. [86]

      ZHANG Z, WEN L P, JIANG L. Chem. Soc. Rev., 2018, 47(2): 322-356.

    87. [87]

      WANG J H, MARTIN C R. Nanomedicine, 2008, 3(1): 13-20.

    88. [88]

      XIE G H, LI P, ZHAO Z J, ZHU Z P, KONG X Y, ZHANG Z, XIAO K, WEN L P, JIANG L. J. Am. Chem. Soc., 2018, 140(13): 4552-4559.

    89. [89]

      ZHANG K L, HE X L, LIU Y, YUP, FEI J J, MAO L Q. Anal. Chem., 2017, 89(12): 6794-6799.

    90. [90]

      RUAN Y F, WANG H Y, SHI X M, XU Y T, YU X D, ZHAO W W, CHEN H Y, XU J J. Anal. Chem., 2021, 93(2): 1200-1208.

    91. [91]

      ALI M, TAHIR M N, SIWY Z S, NEUMANN R, TREMEL W, ENSINGER W. Anal. Chem., 2011, 83(5): 1673-1680.

    92. [92]

      NASCIMENTO R A S, OZEL R E, MAK W H, MULATO M, SINGARAM B, POURMAND N. Nano Lett., 2016, 16(2): 1194-1200.

    93. [93]

      UMEHARA S, KARHANEK M, DAVIS R W, POURMAND N. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(12): 4611-4616.

    94. [94]

      OZEL R E, LOHITH A, MAK W H, POURMAND N. RSC Adv., 2015, 5(65): 52436-52443.

    95. [95]

      ACTIS P, ROGERS A, NIVALA J, VILOZNY B, SEGER R A, JEJELOWO O, POURMAND N. Biosens. Bioelectron., 2011, 26(11): 4503-4507.

    96. [96]

      ACTIS P, VILOZNY B, SEGER R A, LI X, JEJELOWO O, RINAUDO M, POURMAND N. Langmuir, 2011, 27(10): 6528-6533.

    97. [97]

      SUN Y, ZHANG F, QUAN J X, ZHU F, HONG W, MA J K, PANG H, SUN Y, TIAN D M, LI H B. Nat. Commun., 2018, 9(1): 2617.

    98. [98]

      SONG J, XU C H, HUANG S Z, LEI W, RUAN Y F, LU H J, ZHAO W, XU J J,CHEN H Y. Angew. Chem., Int. Ed., 2018, 57(40): 13226-13230.

    99. [99]

      WANG H Y, RUAN Y F, ZHU L B, SHI X M, ZHAO W W, CHEN H Y, XU J J. Angew. Chem., Int. Ed., 2021, 60(1):2-9.

    100. [100]

      ZHANG K L, XIONG T Y, WU F, YUE Q W, JI W L, YU P, MAO L Q. Sci. China Chem., 2020, 63: 1004-1011.

    101. [101]

      ZHANG K L, WEI H, XIONG T Y, JIANG Y N, MA W J, WU F, YU P, MAO L Q. Chem. Sci. 2021, DOI: 10.1039/D1SC00061F.

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  1120
  • HTML全文浏览量:  170
文章相关
  • 收稿日期:  2021-03-30
  • 修回日期:  2021-05-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章