

Citation: WANG Qi, TONG Yuzhang, JIA Xiaopu, YANG Chun, WANG Qinglun, LIAO Daizheng. Syntheses, Crystal Structures and Magnetic Properties of a 2D Cobalt(Ⅱ) Metal-Organic Framework Based on N, N'-Bis-(3-Pyridyl) Terephthalamide and 1, 3, 5-Benzenetricarboxylic Acid[J]. Chinese Journal of Applied Chemistry, 2019, 36(12): 1397-1405. doi: 10.11944/j.issn.1000-0518.2019.12.190125

基于N, N'-双(3-吡啶基)-对苯二甲酰胺和1, 3, 5-苯三甲酸的二维Co(Ⅱ)金属有机骨架的合成、结构和磁性
English
Syntheses, Crystal Structures and Magnetic Properties of a 2D Cobalt(Ⅱ) Metal-Organic Framework Based on N, N'-Bis-(3-Pyridyl) Terephthalamide and 1, 3, 5-Benzenetricarboxylic Acid
-
金属有机框架(Metal-Organic Frameworks,MOFs)作为多孔晶态材料的一个分支,以其结构多样性、优异的热稳定性和可调节的多种功能而著称,在气体储存与分离、分子纳米磁性材料、发光传感器[1-5]等多个领域均有潜在的应用价值。通过各种合成策略,如混合配体方法[6-7]、对称匹配调节配体插入策略[8]和原位合成方法[9]制备多功能的MOFs已经取得了重要进展。在这些合成策略中,混合配体法是一种构建MOFs很有前景的方法,可以获得在常规条件下难以获得或不易形成的新型功能MOFs。
二吡啶酰胺配体因其具有强的配位能力、多种配位导向、充足的配位点和潜在的氢键位点,而成为合成配位聚合物的重要配体[10-12]。按照混合配体策略,可以合成结构多样、性质独特的MOFs,比如具有新颖荧光性质的Cu(Ⅱ)-MOFs和Cd(Ⅱ)- MOFs[13-15],具有高比表面和H2吸附能力的Zn(Ⅱ)-MOFs[16],以及具有自旋转换[17]、单离子磁体[18-20]、变磁性[21-22]等特定磁学性质的MOFs等,但关于利用多元羧酸合成骨架电荷可调、具有刺激响应性的MOFs材料的报道还相对较少[23]。
我们采用混合配体策略,选择二吡啶二酰胺配体N, N′-双(3-吡啶基)-对苯二甲酰胺(N, N′-bis-(3-pyridyl)terephthalamide, 缩写为3-bptpa)与1, 3, 5-苯三甲酸(1, 3, 5-benzenetricarboxylic acid, 缩写为1, 3, 5-H3btc)作为桥连配体(图 1),同时选择具有显著磁各向异性的Co(Ⅱ)离子作为金属中心,合成了[Co(3-bptpa)(1, 3, 5-Hbtc)]·2H2O(1),研究了其晶体结构和磁学性质,该二维Co(Ⅱ)-MOF骨架中含有未解离的羧基,具有pH刺激响应性的可能。
图 1
1. 实验部分
1.1 试剂和仪器
所用试剂均为市售分析纯。Vector-22型傅里叶红外光谱仪(FT-IR,德国Bruker公司); Bruker Smart 1000 CCD型X射线单晶衍射仪(德国Bruker公司); Quantum Design MPMS-7 SQUID型磁强计(美国Quantum Design公司); Perkin-Elmer 240C型元素分析仪(美国Perkin-Elmer公司); HCT-3型热分析系统(北京恒久科学仪器厂)。
1.2 配体3-bptpa和配合物[Co(3-bptpa)(1, 3, 5-Hbtc)]·2H2O(1)的合成
按照文献[24]方法,将对苯二甲酰氯(2.02 g, 10 mmol)溶解于30 mL二氯甲烷中,然后置于圆底烧瓶中,在冰水浴状态下用恒压漏斗加入三乙胺(4.2 mL, 30 mmol)以及3-氨基吡啶(1.882 g, 20 mmol)的无水乙腈溶液(20 mL),将混合物在室温下搅拌2 h,然后加热回流3 h,随后将混合物冷却至室温后,过滤收集固体,分别用饱和碳酸氢钠水溶液、水和乙醚洗涤沉淀,真空干燥,得到3-bptpa 2.1 g,产率65.1%。IR(KBr), σ/cm-1:3347s,2345w,1679m,1560s,1482m,1334m,719w。
将CoCl2·6H2O(0.048 g,0.2 mmol)、3-bptpa(0.0318 g,0.10 mmol)、1, 3, 5-H3btc(0.021 g,0.10 mmol)和NaOH(0.012 g,0.30 mmol)的混合物中加入12 mL水,在室温下充分搅拌30 min[25],转移到25 mL的具有聚四氟乙烯内衬的高压反应釜中,将封闭好的反应釜放入烘箱中,升温至120 ℃,恒温96 h,再以4 ℃/h的速率降至室温,分离得到配合物1的粉红色块状晶体,用蒸馏水洗涤,室温下干燥并收集产品,产率为37%。CoC27H22N4O10元素分析计算值/%:C 52.19,H 3.57,N 9.02;实验值/%:C 52.08,H 3.72,N 9.10。IR(KBr), σ/cm-1:3436s,2350w,1679m,1625m,1545s,1391s,1104m,702w,528w。
1.3 晶体结构测定
单晶X射线衍射结构测定在Bruker Smart 1000 CCD衍射仪上进行。在113 K下,用经过石墨单色器单色化的MoKα射线(λ=0.071073 nm)以ω=2θ扫描方式收集衍射数据。晶体结构用直接法解出,然后用最小二乘法对全部非氢原子坐标及其温度因子进行精修。H原子的位置由理论加氢得到。所有的计算使用SHELXS-97和SHELXL-97程序包[26-27]进行。配合物[Co(3-bptpa)(1, 3, 5-Hbtc)]·2H2O(1)的具体晶体学数据和结构精修参数列于表 1。CCDC:1910964。
表 1
Item Data Empirical formula C27H22CoN4O10 Relative molecular mass 621.41 Crystal system Triclinic Space group P-1 a/nm 0.993 3(2) b/nm 1.091 2(2) c/nm 1.307 3(3) α/(°) 77.43(3) β/(°) 73.58(3) γ/(°) 70.97(3) V/nm3 1.272 5(6) Z 2 ρ/(g·m-3) 1.622×106 Absorption coefficient/mm-1 0.745 F(000) 638 Crystal size/mm3 0.200×0.180×0.120 Theta range for data collection/(°) 1.640 to 27.876 Reflections collected / unique 15 510/6 037[R(int)=0.045 9] Completeness to θ=25.242° 99.9% Max. and min. transmission 1 and 0.880 6 Data / restraints / parameters 6 037/9/400 Goodness-of-fit on F2 1.046 R1(I>2σ(I)) 0.050 3 wR2(I>2σ(I)) 0.106 1 R1 (all data) 0.065 5 wR2(all data) 0.115 0 2. 结果与讨论
2.1 晶体结构分析
配合物1的结构属于三斜晶系,P-1空间群。1, 3, 5-Hbtc2-共有两个羧基解离并与Co(Ⅱ)离子配位,其中1个羧基作为双齿配体与1个Co(Ⅱ)离子螯合配位(称为螯合配位的羧基),另一个羧基作为μ2-η1:η1型桥连配体以syn-syn模式与两个Co(Ⅱ)离子配位(称为桥连配位的羧基)。
如图 2所示,在其不对称单元[Co(3-bptpa)(1, 3, 5-Hbtc)]里存在着1个Co2+离子、1个3-bptpa配体和1个1, 3, 5-Hbtc2-阴离子和2个结晶水分子。来自1, 3, 5-Hbtc2-的1个螯合配位的羧基与Co(Ⅱ)离子配位(Co(1)—O(3)=0.22185(17) nm,Co(1)—O(4) =0.22074(17) nm),来自3-bptpa的1个吡啶基N原子从接近垂直于Co(1)O(3)O(4)平面的方向上与Co(Ⅱ)离子配位(Co(1)—N(1)=0.2140(2) nm,∠N(1)—Co(1)—O(3)=87.72(7),∠N(1)—Co(1)—O(4)=89.77(7)°)。
图 2
如图 3所示,来自1, 3, 5-Hbtc2-的桥连配位的羧基的1个O原子与Co(Ⅱ)离子配位(Co(1)—O(5A)=0.20152(16) nm),2个不对称单元[Co(3-bptpa)(1, 3, 5-Hbtc)]通过这种配位作用连接为1个中心对称的二聚体[Co(3-bptpa)(1, 3, 5-Hbtc)]2,同时2个螯合配位的羧基、2个Co(Ⅱ)离子和2个桥连配位的羧基连接形成近乎共面的16元环结构,在这个16元环结构中相邻的Co(Ⅱ)离子(Co(1)和Co(1A))之间的距离为0.7402(1) nm。
图 3
如图 4A所示,相邻的二聚体通过一对Co—O配位键[Co(1) —O(6)#2)连接为一维梯形链[Co2(3-bptpa)2(μ3-1, 3, 5-Hbtc)]n,同时由2个桥连配位的羧基和2个Co(Ⅱ)离子交替连接形成8元环结构[O—C—O—Co]2,在这个8元环结构中相邻的Co(Ⅱ)离子(如Co(1)和Co(1)#4)之间的距离为0.3845(11) nm,和文献[28]中羧基以syn-syn模式桥连的2个Co(Ⅱ)离子之间的距离0.3339(2) nm相近。相邻的一维梯形链之间通过Co(Ⅱ)与吡啶基的配位作用(Co(1)—N(4)#3=0.2164(2) nm)连接为电中性的二维格子[Co2(μ2-3-bptpa)2(μ3-1, 3, 5-Hbtc)]n。在二维格子中,1个Co(Ⅱ)离子与来自3个1, 3, 5-Hbtc2-配体的4个O原子[O(4)、O(3)、O(5)#1和O(6)#2]和来自2个3-bptpa配体的2个N原子[N(1)和N(4)#3]配位,从而形成CoN2O4变形八面体的配位构型(图 4B)。Co—O键长在0.20152~0.22185 nm之间,Co—N键长分别为Co(1)—N(1)=0.2140 nm和Co(1)—N(4)#3=0.2164 nm,与文献[29]中具有八面体配位环境的Co(Ⅱ)配合物的键长数据一致(表 2)。被1个3-bptpa配体连接的2个相邻Co(Ⅱ)离子(如Co(1)和Co(1)#5)之间的距离为1.75110(69) nm。
图 4
表 2
Bond lengths/nm Co(1)—O(5)#1 0.201 52(16) Co(1)—O(6)#2 0.207 18(17) Co(1)—N(1) 0.214 0(2) Co(1)—N(4)#3 0.216 4(2) Co(1)—O(4) 0.220 74(17) Co(1)—O(3) 0.221 85(17) Bond angles/(°) O(5)#1—Co(1)—O(6)#2 127.67(7) O(5)#1—Co(1)—N(1) 88.49(8) O(6)#2—Co(1)—N(1) 92.58(8) O(5)#1—Co(1)—N(4)#3 89.32(8) O(6)#2—Co(1)—N(4)#3 85.15(8) N(1)—Co(1)—N(4)#3 174.94(7) O(5)#1—Co(1)—O(4) 89.77(7) O(6)#2—Co(1)—O(4) 141.38(6) N(1)—Co(1)—O(4) 98.18(8) N(4)#3—Co(1)—O(4) 86.37(7) O(5)#1—Co(1)—O(3) 147.92(7) O(6)#2—Co(1)—O(3) 84.32(6) N(1)—Co(1)—O(3) 87.72(7) N(4)#3—Co(1)—O(3) 96.54(7) O(4)—Co(1)—O(3) 59.36(6) Symmetry transformations used to generate equivalent atoms: #1 -x+3, -y, -z; #2 x-1, y, z; #3 x+1, y-1, z-1. 结晶水分子[O(9)和O(10)]分布在2D格子中,其中O(10)分别与未解离的羧基氧原子[O(7)]、螯合配位的羧基O原子[O(4)]和酰胺的羰基氧原子[O(2)]形成氢键[O(10A)O(7A)=0.2606;O(10A)O(4A)=0.2932;O(10A)O(2D)=0.2808 nm];O(9)分别与螯合配位的羧基O原子(O(3))和酰胺的氨基N原子(N(2))形成氢键[O(9A)O(3A)=0.2853;O(9A)N(2B)=0.2984 nm]。2D格子通过氢键和范德华力堆积为3D多孔结构,相邻层间的CoCo最近距离为0.7973 nm。
2.2 配合物1的红外光谱
如图 5所示,在室温下,在4000~400 cm-1范围内对配合物1进行固态红外光谱测试(KBr压片)。在3436 cm-1附近的宽峰,归属为水分子和质子未解离的羧基中的羟基O—H及氨基N—H的伸缩振动[30],而且它们参与形成氢键。在1679 cm-1处有宽且强的振动吸收,归属为未解离的羧基—COOH的伸缩和弯曲振动[13, 31]。螯合配位和双齿桥连配位的羧基的不对称伸缩振动分裂为1625和1545 cm-1两个吸收峰,1391 cm-1处的吸收峰归属为羧基的对称伸缩振动[32-35]。吡啶环上C=N伸缩振动峰[36]也出现在1545 cm-1附近与羧基的不对称伸缩振动重叠[11],比自由配体3-bptpa中吡啶环的C=N伸缩振动吸收峰1482蓝移63 cm-1。在528 cm-1附近的吸收归属为配位键Co(Ⅱ)—N的伸缩振动[37]。
图 5
2.3 配合物1的热稳定性
如图 6所示,为研究配合物1的热稳定性,在N2气氛下30~800 ℃范围内对配合物1进行了热重分析(Thermogravimetric Analyses, TGA)和差热分析(Differential Thermal Analyses, DTA),升温速率为10 ℃/min。配合物1的TGA曲线显示明显的两步失重,第1步失重在103~129 ℃温度范围内,归属为[Co(3-bptpa)(1, 3, 5-Hbtc)]·2H2O结晶水分子的失去。失重率理论值为5.79%,实验值为4.90%,实验值偏低可能是因为所测样品部分风化所致。第2步失重在384~532 ℃范围内,归属为配体的破坏和MOF骨架的逐步坍塌。推测550 ℃以上的残渣主要是CoO,失重率理论值为87.94%,实验值为86.45%。DTA曲线显示配合物1有两个吸热峰(125和398 ℃)和1个放热峰(470 ℃),2个吸热峰分别对应结晶水的失去和MOF骨架的破坏,放热峰对应有机配体被氧化和CoO的形成。
图 6
2.4 配合物1的磁学性质
在2~300 K的温度范围内和1000 Oe的直流磁场强度下,测定配合物1的变温磁化率。如图 7所示,在300 K时,μeff 值为4.592 B.M.,明显大于一个高自旋Co(Ⅱ)离子的仅自旋值3.873 B.M.(S=3/2,g=2.0),但与报导的具有一级轨道贡献的八面体场中基态为4T1g的Co(Ⅱ)离子的值(μeff=4.647~5.215 B.M.)一致[18-19, 38]。这是由于Co(Ⅱ)离子强的轨道磁矩贡献所致。
图 7
随着温度从300 K降低到75 K,μeff值基本保持不变,然后开始急剧降低,在2 K时下降到最小值1.625 B.M.,显著低于一个孤立的Co(Ⅱ)离子的仅自旋值3.720 B.M.(Seff=1/2, g≈4.3)[39],这是晶体场效应和旋轨耦合作用共同作用的结果,与文献报道的低温值2.46 B.M.[40]和2.94 B.M.[41]接近。说明配合物1中既存在显著的旋轨耦合(spin-orbit coupling)作用,同一层内相邻的Co(Ⅱ)离子之间预期也通过syn-syn模式桥连配位的羧基传递的较弱的反铁磁相互作用[40, 42-43]。
为了定量评估Co(Ⅱ)离子的旋轨耦合作用和相邻的Co(Ⅱ)离子之间的磁相互作用,基于Co(Ⅱ)离子的轨道贡献,使用八面体场下旋轨耦合的各向同性的单离子近似,可推出其磁化率的理论表达式:
$ {\chi _{{\rm{Co}}}} = \frac{{N{\beta ^2}}}{{3KT}}\left[ {\frac{N}{D}} \right] $
$ \begin{array}{l} N = \frac{{7{{(3 - A)}^2}x}}{5} + \frac{{12{{(A + 2)}^2}}}{{25A}} + \left\{ {\frac{{2{{(11 - 2A)}^2}x}}{{45}} + \frac{{176{{(A + 2)}^2}}}{{675A}}} \right\}\exp \left( {\frac{{ - 5Ax}}{2}} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left\{ {\frac{{{{(A + 5)}^2}x}}{9} - \frac{{20{{(A + 2)}^2}}}{{27A}}} \right\}\exp ( - 4Ax) \end{array} $
$ D = \frac{x}{3}\left[ {3 + 2\exp \left( {\frac{{ - 5Ax}}{2}} \right) + \exp ( - 4Ax)} \right] $
$ A = 1.5 \sim 1.0, \;x = \frac{\lambda }{{kT}} $
式中,λ为旋轨耦合参数(对自由Co(Ⅱ)离子,λ=-170 cm-1)[39]。同时使用分子场近似处理Co(Ⅱ)离子间通过羧基桥传递的磁相互作用:
$ \chi _{\rm{M}}^\prime = \frac{{{\chi _{\rm{M}}}}}{{1 - \left( {2z{J^\prime }/N{g^2}{\beta ^2}} \right){\chi _{\rm{M}}}}} $
如图 7所示,对16~300 K数据最佳拟合后得到:λ=-100.4 cm-1, A=1.0, zj′=-0.618 cm-1,一致性因子R=1.62×10-3。旋轨耦合常数λ值明显小于自由的Co(Ⅱ)离子,归因于Co—N和Co—O配位键的共价性[44]。A=1.0说明配合物1中Co(Ⅱ)周围由羧基和吡啶基形成的N2O4八面体配位场很强。zj′=-0.618 cm-1表明相邻Co(Ⅱ)离子通过羧基桥传递较弱的反铁磁相互作用,这与按照Curis-Weiss定律[χM=C/(T-θ)]拟合所得的θ<0的结果一致(T=2~300 K,C=2.650 (cm3·K)/mol,θ=-6.280 K,R2=0.99)。
3. 结论
在水热条件下,CoCl2与混合配体(3-bptpa和1, 3, 5-H3btc)反应,合成了一例二维格子结构的MOF[Co(3-bptpa)(1, 3, 5-Hbtc)]·2H2O(1),MOF中Co(Ⅱ)采取CoN2O4变形八面体的配位构型。磁性研究表明,Co(Ⅱ)离子表现强的旋轨耦合作用(λ=-100.4 cm-1),相邻的Co(Ⅱ)离子主要通过桥连配位的羧基传递弱的反铁磁相互作用(zj′=-0.618 cm-1)。该二维Co(Ⅱ)-MOF骨架中含有未解离的羧基,具有pH刺激响应性的可能,关于pH对磁学性质的调控作用正在研究中。
-
-
[1]
Li J R, Sculley J, Zhou H C. Metal Organic Frameworks for Separations[J]. Chem Rev, 2012, 112(2): 869-932.
-
[2]
Duan J, Higuchi M, Krishna R. High CO2/N2/O2/CO Separation in a Chemically Robust Porous Coordination Polymer with Low Binding Energy[J]. Chem Sci, 2014, 5: 660-666. doi: 10.1039/C3SC52177J
-
[3]
Coronado E, Espallargas G M. Dynamic Magnetic MOFs[J]. Chem Soc Rev, 2013, 42: 1525-1539. doi: 10.1039/C2CS35278H
-
[4]
Zou J Y, Shi W, Xu N. A Homospin Cobalt(Ⅱ) Topological Ferrimagnet[J]. Chem Commun, 2013, 49: 8226-8228. doi: 10.1039/c3cc43642j
-
[5]
Jia X X, Yao R X, Zhang F Q. A Fluorescent Anionic MOF with Zn4(trz)2 Chain for Highly Selective Visual Sensing of Contaminants:Cr(Ⅲ) Ion and TNP[J]. Inorg Chem, 2017, 56(5): 2690-2696. doi: 10.1021/acs.inorgchem.6b02872
-
[6]
Zou J Y, Shi W, Gao H L. Spin Canting and Metamagnetism in 3D Pillared-Layer Homospin Cobalt(Ⅱ) Molecular Magnetic Materials Constructed via a Mixed Ligands Approach[J]. Inorg Chem Front, 2014, 1: 242-248. doi: 10.1039/c3qi00045a
-
[7]
Yin Z, Zhou Y L, Zeng M H. The Concept of Mixed Organic Ligands in Metal-Organic Frameworks:Design, Tuning and Functions[J]. Dalton Trans, 2015, 44: 5258-5275. doi: 10.1039/C4DT04030A
-
[8]
Zhao X, Bu X H, Zhai Q G. Pore Space Partition by Symmetry-Matching Regulated Ligand Insertion and Dramatic Tuning on Carbon Dioxide Uptake[J]. J Am Chem Soc, 2015, 137(4): 1396-1399. doi: 10.1021/ja512137t
-
[9]
Feng Y Y, Liu X Y, Duan L Q. In-Situ Synthesized 3D Heterometallic Metal-Organic Framework(MOF) as High-Energy-Density Materials Shows High Heat of Detonation, Good Thermostability and Insensitivity[J]. Dalton Trans, 2015, 44: 2333-2339. doi: 10.1039/C4DT03131H
-
[10]
Liu G C, Yu H X, Lin H Y. Spacers-Induced Structural Diversity of Cobalt Coordination Polymers Based on "V"-type Dipyridylamide and Dicarboxylic Ligands:Fluorescent, Magnetic and Photocatalytic Properties[J]. Polyhedron, 2017, 126: 205-213. doi: 10.1016/j.poly.2017.01.022
-
[11]
Hsu Y F, Lin C H, Chen J D. A Novel Interpenetrating Diamondoid Network from Self-assembly of N, N'-Di(4-pyridyl)adipoamide and Copper Sulfate:An Unusual 12-Fold, [6+6] Mode[J]. Cryst Growth Des, 2008, 8(4): 1094-1096. doi: 10.1021/cg701209k
-
[12]
Cheng P C, Kuo P T, Liao Y H. Ligand-Isomerism Controlled Structural Diversity of Zn(Ⅱ) and Cd(Ⅱ) Coordination Polymers from Mixed Dipyridyladipoamide and Benzenedicarboxylate Ligands[J]. Cryst Growth Des, 2013, 13(2): 623-632.
-
[13]
Wang X L, Luan J, Sui F F. Structural Diversities, Fluorescent and Photocatalytic Properties of a Series of CuⅡ Coordination Polymers Constructed from Flexible Bis-pyridyl-Bis-amide Ligands with Different Spacer Length and Different Aromatic Carboxylates[J]. Cryst Growth Des, 2013, 13(8): 3561-3576. doi: 10.1021/cg400538c
-
[14]
Wang X L, Sui F F, Lin H Y. Aromatic Polycarboxylate-Tuned Assembly of Three New 2D Copper(Ⅱ) Complexes Derived from a Flexible Bis(pyridylamide) Ligand[J]. Aust J Chem, 2013, 66(1): 67-74. doi: 10.1071/CH12357
-
[15]
Wang X L, Xiong Y, Sha X T. Various Polycarboxylate-Directed Cd(Ⅱ) Coordination Polymers Based on a Semirigid Bis-pyridyl-Bis-amide Ligand:Construction and Fluorescent and Photocatalytic Properties[J]. Cryst Growth Des, 2017, 17(2): 483-496.
-
[16]
Dybtsev D N, Chun H, Kim K. Rigid and Flexible:A Highly Porous Metal Organic Framework with Unusual Guest-Dependent Dynamic Behavior[J]. Angew Chem Int Ed, 2004, 43(38): 5033-5036. doi: 10.1002/anie.200460712
-
[17]
Liu W, Peng Y Y, Wu S G. Guest-Switchable Multi-Step Spin Transitions in an Amine-Functionalized Metal-Organic Framework[J]. Angew Chem Int Ed, 2017, 129(47): 15178-15182. doi: 10.1002/ange.201708973
-
[18]
Shi L, Shao D, Wei H Y. Two Interpenetrated Cobalt(Ⅱ) Metal-Organic Frameworks with Guest-Dependent Structures and Field-Induced Single-Ion Magnet Behaviors[J]. Cryst Growth Des, 2018, 18(9): 5270-5278. doi: 10.1021/acs.cgd.8b00714
-
[19]
Wang Y L, Chen L, Liu C M. Field-Induced Slow Magnetic Relaxation and Gas Adsorption Properties of a Bifunctional Cobalt(Ⅱ) Compound[J]. Inorg Chem, 2015, 54(23): 11362-11368. doi: 10.1021/acs.inorgchem.5b02324
-
[20]
Vallejo J, Fortea-Pérez F R, Pardo E. Guest-Dependent Single-Ion Magnet Behaviour in a Cobalt(Ⅱ) Metal Organic Framework[J]. Chem Sci, 2016, 7: 2286-2293. doi: 10.1039/C5SC04461H
-
[21]
Gupta K, Dadwal A, Rana S. Metamagnetism in Nanosheets of CoⅡ-MOF with TN at 26 K and a Giant Hysteretic Effect at 5 K[J]. Inorg Chem, 2018, 57(24): 15044-15047. doi: 10.1021/acs.inorgchem.8b03064
-
[22]
Lim K S, Lee W R, Lee H G. Control of Interchain Antiferromagnetic Coupling in Porous Co(Ⅱ)-Based Metal-Organic Frameworks by Tuning the Aromatic Linker Length:How Far Does Magnetic Interaction Propagate?[J]. Inorg Chem, 2017, 56(13): 7443-7448. doi: 10.1021/acs.inorgchem.7b00899
-
[23]
Tian C B, Han Y H, He Z Z. Magnetic Tuning of an Anionic CoⅡ-MOF through Deionization of the Framework:Spin-Canting, Spin-Flop, and Easy-Plane Magnetic Anisotropy[J]. Chem Eur J, 2017, 23(4): 767-772. doi: 10.1002/chem.201604809
-
[24]
Qin Z, Jennings M C, Puddephatt R J. Self-assembly in Palladium(Ⅱ) and Platinum(Ⅱ) Chemistry:The Biomimetic Approach[J]. Inorg Chem, 2003, 42(6): 1956-1965. doi: 10.1021/ic020322z
-
[25]
Wang X L, Luan J, Lin H Y. The Various Architectures and Properties of a Series of Coordination Polymers Tuned by the Central Metals[J]. Dalton Trans, 2014, 43: 8072-8082. doi: 10.1039/c4dt00064a
-
[26]
Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution[CP]. University of Gö ttingen. Germany, 1997.
-
[27]
Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structures[CP]. University of Göttingen. Germany, 1997.
-
[28]
Li M X, Zhang Y F, He X. Diverse Structures and Ferro-/Ferri-/Antiferromagnetic Interactions of Pyridyltetrazole Coordination Polymers with Polycarboxylate Auxiliary Ligands[J]. Cryst Growth Des, 2016, 16(5): 2912-2922. doi: 10.1021/acs.cgd.6b00258
-
[29]
Wang X L, Mu B, Lin H Y. Substituent Groups from Aromatic Dicarboxylates Modulated Structural Diversification in the Assembly of Co(Ⅱ) Complexes Based on the Bis-pyridyl-Bis-amide Ligands[J]. Sci China Chem, 2013, 56(5): 557-566. doi: 10.1007/s11426-012-4784-6
-
[30]
Gangu K K, Maddila S, Mukkamala S B. A 3D Supramolecular Assembly of Co(Ⅱ) MOF Constructed with 2, 5-Pyridinedicarboxylate Strut and Its Catalytic Activity towards Synthesis of Tetrahydrobiphenylene-1, 3-Dicarbonitriles[J]. Inorg Chim Acta, 2018, 482: 830-837. doi: 10.1016/j.ica.2018.07.030
-
[31]
贠吉星, 胡志莉, 李禹蒙. 由芳香羧酸构筑的系列配合物的合成、结构及光电性能[J]. 高等学校化学学报, 2018,39,(10): 2161-2169. doi: 10.7503/cjcu20180076YUN Jixing, HU Zhili, LI Yumeng. Synthesis, Structure and Photoelectric Property of a Series of Ni(Ⅱ) Complexes Constructed Through Aromatic Carboxylic Ligands[J]. Chem J Chinese Univ, 2018, 39(10): 2161-2169. doi: 10.7503/cjcu20180076
-
[32]
Deacon G B, Phillips R J. Relationships Between the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination[J]. Coord Chem Rev, 1980, 33(3): 227-250. doi: 10.1016/S0010-8545(00)80455-5
-
[33]
Yang G P, Wang Y Y, Ma L F. Hydrothermal Syntheses and Characterizations of Three Coordination Polymers Based on Mixed Organic Ligands[J]. Eur J Inorg Chem, 2007, 24: 3892-3898.
-
[34]
Wang R, Zhang J, Li L. Conformation Preference of a Flexible Cyclohexanetetracarboxylate Ligand in Three New Metal-Organic Frameworks:Structures, Magnetic and Luminescent Properties[J]. Inorg Chem, 2009, 48(15): 7194-7200. doi: 10.1021/ic900390y
-
[35]
Zeng M H, Tan Y X, He Y P. A Porous 4Fold-Interpenetrated Chiral Framework Exhibiting Vapochromism, Single-Crystal-to-Single-Crystal Solvent Exchange, Gas Sorption, and a Poisoning Effect[J]. Inorg Chem, 2013, 52(5): 2353-2360. doi: 10.1021/ic301857h
-
[36]
Wang X L, Wu X M, Liu G C. Four Thiophene-Pyridyl-Amide-Based ZnⅡ/CdⅡ Coordination Polymers:Assembly, Structures, Photocatalytic Properties and Fluorescent Recognition for Fe3+[J]. J Solid State Chem, 2017, 249: 51-57. doi: 10.1016/j.jssc.2017.02.018
-
[37]
Batool S S, Gilani S R, Tahir M N. Synthesis, and Structural Characterization of Mixed Ligand Copper(Ⅱ) Complexes of N, N, N', N'-Tetramethylethylenediamine Incorporating Carboxylates[J]. J Mol Struct, 2017, 1148: 7-14. doi: 10.1016/j.molstruc.2017.07.014
-
[38]
Yang C, Wang Q L, Tang G T. Synthesis, Crystal Structure, Spectroscopy and Magnetism of a Mixed Valence Co(Ⅲ)-Co(Ⅱ)-Co(Ⅲ) Complex Stabilized by N-(2-Hydroxybenzyl)salicylaldimine[J]. J Coord Chem, 2010, 63(3): 505-514. doi: 10.1080/00958970903509277
-
[39]
Fabelo O, Pasán J, Canadillas-Delgado L. Cobalt(Ⅱ) Sheet-Like Systems Based on Diacetic Ligands:From Subtle Structural Variances to Different Magnetic Behaviors[J]. Inorg Chem, 2009, 48(13): 6086-6095. doi: 10.1021/ic9004483
-
[40]
Jia H P, Li W, Ju Z F. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers[J]. Eur J Inorg Chem, 2006, 21: 4264-4270.
-
[41]
Rueff J M, Masciocchi N, Rabu P. Synthesis, Structure and Magnetism of Homologous Series of Polycrystalline Cobalt Alkane Mono- and Dicarboxylate Soaps[J]. Chem Eur J, 2002, 8(8): 1813-1820. doi: 10.1002/1521-3765(20020415)8:8<1813::AID-CHEM1813>3.0.CO;2-G
-
[42]
Li L, Zou J Y, You S Y. Assembly of a New (3, 6)-Connected Cobalt(Ⅱ) Metal-Organic Framework via a Mixed Ligands Approach[J]. Polyhedron, 2018, 141: 262-266. doi: 10.1016/j.poly.2017.11.049
-
[43]
Fabelo O, Canñadillas-Delgado L, Pasán J. Study of the Influence of the Bridge on the Magnetic Coupling in Cobalt(Ⅱ) Complexes[J]. Inorg Chem, 2009, 48(23): 11342-11351. doi: 10.1021/ic901843r
-
[44]
Masuhara N, Hayami S, Motokawa N. Crystal Structure and Magnetic Property of Two Novel 1-D Cobalt(Ⅱ) Assemblies[J]. Chem Lett, 2007, 36(1): 90-91.
-
[1]
-
表 1 配合物1的晶体学参数
Table 1. Crystal data and structure refinement for complex 1
Item Data Empirical formula C27H22CoN4O10 Relative molecular mass 621.41 Crystal system Triclinic Space group P-1 a/nm 0.993 3(2) b/nm 1.091 2(2) c/nm 1.307 3(3) α/(°) 77.43(3) β/(°) 73.58(3) γ/(°) 70.97(3) V/nm3 1.272 5(6) Z 2 ρ/(g·m-3) 1.622×106 Absorption coefficient/mm-1 0.745 F(000) 638 Crystal size/mm3 0.200×0.180×0.120 Theta range for data collection/(°) 1.640 to 27.876 Reflections collected / unique 15 510/6 037[R(int)=0.045 9] Completeness to θ=25.242° 99.9% Max. and min. transmission 1 and 0.880 6 Data / restraints / parameters 6 037/9/400 Goodness-of-fit on F2 1.046 R1(I>2σ(I)) 0.050 3 wR2(I>2σ(I)) 0.106 1 R1 (all data) 0.065 5 wR2(all data) 0.115 0 表 2 配合物1的部分键长(nm)和键角(°)
Table 2. The selected bond lengths(nm) and angles(°) for complex 1
Bond lengths/nm Co(1)—O(5)#1 0.201 52(16) Co(1)—O(6)#2 0.207 18(17) Co(1)—N(1) 0.214 0(2) Co(1)—N(4)#3 0.216 4(2) Co(1)—O(4) 0.220 74(17) Co(1)—O(3) 0.221 85(17) Bond angles/(°) O(5)#1—Co(1)—O(6)#2 127.67(7) O(5)#1—Co(1)—N(1) 88.49(8) O(6)#2—Co(1)—N(1) 92.58(8) O(5)#1—Co(1)—N(4)#3 89.32(8) O(6)#2—Co(1)—N(4)#3 85.15(8) N(1)—Co(1)—N(4)#3 174.94(7) O(5)#1—Co(1)—O(4) 89.77(7) O(6)#2—Co(1)—O(4) 141.38(6) N(1)—Co(1)—O(4) 98.18(8) N(4)#3—Co(1)—O(4) 86.37(7) O(5)#1—Co(1)—O(3) 147.92(7) O(6)#2—Co(1)—O(3) 84.32(6) N(1)—Co(1)—O(3) 87.72(7) N(4)#3—Co(1)—O(3) 96.54(7) O(4)—Co(1)—O(3) 59.36(6) Symmetry transformations used to generate equivalent atoms: #1 -x+3, -y, -z; #2 x-1, y, z; #3 x+1, y-1, z-1. -

计量
- PDF下载量: 5
- 文章访问数: 662
- HTML全文浏览量: 113