热响应型PNIPAM@Ag/Ag3PO4/CN复合光催化剂的制备及性能

孙林林 周亚举 李鑫 李金择 沈东 尹世康 王会琴 霍鹏伟 闫永胜

引用本文: 孙林林,  周亚举,  李鑫,  李金择,  沈东,  尹世康,  王会琴,  霍鹏伟,  闫永胜. 热响应型PNIPAM@Ag/Ag3PO4/CN复合光催化剂的制备及性能[J]. 催化学报, 2020, 41(10): 1573-1588. doi: 10.1016/S1872-2067(20)63554-9 shu
Citation:  Linlin Sun,  Yaju Zhou,  Xin Li,  Jinze Li,  Dong Shen,  Shikang Yin,  Huiqin Wang,  Pengwei Huo,  Yongsheng Yan. Thermo-responsive functionalized PNIPAM@Ag/Ag3PO4/CN-heterostructure photocatalyst with switchable photocatalytic activity[J]. Chinese Journal of Catalysis, 2020, 41(10): 1573-1588. doi: 10.1016/S1872-2067(20)63554-9 shu

热响应型PNIPAM@Ag/Ag3PO4/CN复合光催化剂的制备及性能

  • 基金项目:

    国家自然科学基金(21576125和21776117);中国博士后科学基金(2017M611734);江苏省六大人才高峰项目(XCL-014).

摘要: 近年来,在银盐半导体光催化剂的研究过程中,Ag3PO4由于具有各向同性分布、强氧化性和优异的可见光吸收能力等优点,引起了人们的广泛关注.Ag3PO4在反应过程中生成的Ag纳米颗粒会产生等离子体共振效应,对可见光驱动的光催化过程起积极作用.但是,在催化剂制备过程中Ag3PO4颗粒容易发生团聚,这限制了光催化降解过程中催化剂的反应活性.片状g-C3N4具有较大的比表面积,可对Ag3PO4颗粒起到良好的分散作用,并为反应提供更多活性位点.此外,g-C3N4与Ag3PO4能够形成Z-型异质结,提高电子与空穴的分离效率.
在光催化降解污染物过程中,周围环境对催化剂性能具有显著影响,构建对环境具有响应性的光催化剂,实现环境调控光解过程对于理解光催化降解机理具有重要意义.聚N-异丙基丙烯酰胺(PNIPAM)是一种温度响应型聚合物,在LCST(32℃)附近具有可逆的亲水性至疏水性转化.随着温度降低,PNIPAM亲水性增加,显示出从收缩团聚到拉伸溶胀状态的变化.PNIPAM还可以用作保护层包裹在Ag3PO4颗粒表面,防止Ag3PO4颗粒在反应过程的损失.
本文采用沉淀法和乳液聚合法合成了热响应型PNIPAM@Ag/Ag3PO4/CN复合光催化剂,并以20mg·L-1四环素(TC)作为目标污染物探究其对温度可逆转换的光催化性能.通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、荧光(PL)、接触角测试等一系列表征对该催化剂的结构特征、微观形貌、光学性能和亲疏水性进行了分析.由XRD可知,Ag/Ag3PO4/CN复合物和PNIPAM@Ag/Ag3PO4/CN具有相同的衍射峰强度和位置,表明PNIPAM未影响Ag/Ag3PO4/CN复合物的晶型结构.XPS结果表明,复合材料含有Ag,P,O,C和N.由SEM和TEM可知,PNIPAM已将Ag/Ag3PO4/CN复合物成功包裹.接触角测试表明,PNIPAM@Ag/Ag3PO4/CN在25℃表现出亲水性,在45℃呈现疏水性.光催化性能测试结果进一步表明,PNIPAM@Ag/Ag3PO4/CN实现了在不同温度下的光催化可逆转换性能:25℃时照射120min,TC降解效率可达88.96%;45℃时照射120min,TC降解效率是56.73%.此外,对催化剂进行了循环实验,经过4次循环后催化剂仍具有优异的光催化降解性能,表明所制备的催化剂具有良好的稳定性.
为了进一步研究PNIPAM@Ag/Ag3PO4/CN光催化剂的光催化机理,用抗坏血酸、乙二胺四乙酸和异丙醇进行了自由基捕获实验.结果表明,超氧自由基和羟基自由基在降解TC过程中起主要作用.通过价带谱测试和带隙计算出材料的价导带位置,计算出的导带位置与莫特肖基曲线测试结果一致.最后,对可能的机理进行了分析.总之,PNIPAM@Ag/Ag3PO4/CN光催化剂不仅实现了对降解过程不同温度的响应性,还可防止Ag3PO4颗粒团聚和光腐蚀,提高了电子-空穴对的传输速率.这为环境响应型复合光催化剂的制备提供了一种策略.

English

    1. [1] S. Huang, Y. Xu, T. Zhou, M. Xie, Y. Ma, Q. Liu, L. Jing, H. Xu, H. Li, Appl. Catal. B, 2018, 225, 40-50.

    2. [2] T. Li, H. Wei, H. Jia, T. Xia, X. Guo, T. Wang, L. Zhu, ACS Sustain. Chem. Eng., 2019, 7, 4177-4185.

    3. [3] F. Teng, Z. Liu, A. Zhang, M. Li, Environ. Sci. Technol., 2015, 49, 9489-9494.

    4. [4] Z. Chen, W. Wang, Z. Zhang, X. Fang, J. Phys. Chem. C, 2013, 117, 19346-19352.

    5. [5] X. C. Ma, Y. Dai, L. Yu, B. B. Huang, Light-Sci. Appl., 2016, 5, e16017.

    6. [6] C. Yang, W. Teng, Y. Song, Y. Cui, Chin. J. Catal., 2018, 39, 1615-1624.

    7. [7] X. Ji, X. Yuan, J. Wu, L. Yu, H. Guo, H. Wang, H. Zhang, D. Yu, Y. Zhao, ACS Appl. Mater. Interfaces, 2017, 9, 24616-24624.

    8. [8] B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, M. Chen, Y. Liu, W. Zhang, H. Feng, ACS Sustain. Chem. Eng., 2018, 6, 16424-16436.

    9. [9] F. Raziq, Y. Qu, X. Zhang, M. Humayun, J. Wu, A. Zada, H. Yu, X. Sun, L. Jing, J. Phys. Chem. C, 2015, 120, 98-107.

    10. [10] Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu, Light-Sci. Appl., 2019, 8, e42.

    11. [11] L. Zhu, H. Li, P. Xia, Z. Liu, D. Xiong, ACS Appl. Mater. Interfaces, 2018, 10, 39679-39687.

    12. [12] Y. You, S. Wang, K. Xiao, T. Ma, Y. Zhang, H. Huang, ACS Sustain. Chem. Eng., 2018, 6, 16219-16227.

    13. [13] Q. Liu, J. Huan, N. Hao, J. Qian, H. Mao, K. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 18369-18376.

    14. [14] C. Fei Guo, T. Sun, F. Cao, Q. Liu, Z. Ren, Light-Sci. Appl., 2014, 3, e161.

    15. [15] J. Wang, Z. Zhang, X. Wang, Y. Shen, Y. Guo, P. K. Wong, R. Bai, Chin. J. Catal., 2018, 39, 1792-1803.

    16. [16] D. Lu, S. Ouyang, H. Xu, D. Li, X. Zhang, Y. Li, J. Ye, ACS Appl. Mater. Interfaces, 2016, 8, 9506-9513.

    17. [17] H. Shan, Y. Yu, X. Wang, Y. Luo, S. Zu, B. Du, T. Han, B. Li, Y. Li, J. Wu, F. Lin, K. Shi, B. K. Tay, Z. Liu, X. Zhu, Z. Fang, Light-Sci. Appl., 2019, 8, 9.

    18. [18] L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, ACS Catal., 2012, 2, 1677-1683.

    19. [19] H. Jung, M. Park, M. Kang, K. H. Jeong, Light-Sci. Appl., 2016, 5, e16009.

    20. [20] S. Y. Jeong, H.-M. Shin, Y.-R. Jo, Y. J. Kim, S. Kim, W.-J. Lee, G. J. Lee, J. Song, B. J. Moon, S. Seo, H. An, S. H. Lee, Y. M. Song, B.-J. Kim, M.-H. Yoon, S. Lee, J. Phys. Chem. C, 2018, 122, 7088-7093.

    21. [21] Y. Chen, C. Shen, J. Wang, G. Xiao, G. Luo, ACS Sustain. Chem. Eng., 2018, 6, 13276-13286.

    22. [22] Z. Wei, F. Yue, Z. Jin, Z. Fengxia, S. Zhenhuan, D. Benlin, D. Y. C. Leung, Z. Lili, X. Jiming, ACS Appl. Energy Mater., 2018, 2, 694-704.

    23. [23] P. Huo, Z. Ye, H. Wang, Q. Guan, Y. Yan, J. Alloy. Compd., 2017, 696, 701-710.

    24. [24] Z. Yu, D. Tang, H. Lv, Q. Feng, Q. Zhang, E. Jiang, Q. Wang, Colloid. Surf. A, 2015, 471, 117-123.

    25. [25] W. Xing, L. Ni, X. Liu, Y. Luo, Z. Lu, Y. Yan, P. Huo, RSC Adv., 2013, 3, 26334-26342.

    26. [26] Z. Gao, J. Liang, X. Tao, Y. Cui, T. Satoh, T. Kakuchi, Q. Duan, Macromol. Res., 2012, 20, 508-514.

    27. [27] Y. H. Chen, D. G. Ma, H. D. Sun, J. S. Chen, Q. X. Guo, Q. Wang, Y. B. Zhao, Light-Sci Appl., 2016, 5, e16042.

    28. [28] C. Ma, H. Huang, X. Gao, T. Wang, Z. Zhu, P. Huo, Y. Liu, Y. Yan, J. Taiwan Inst. Chem. Eng., 2018, 91, 299-308.

    29. [29] H. Qiu, C. Liang, J. Yu, Q. Zhang, M. Song, F. Chen, Chem. Eng. J., 2017, 315, 345-354.

    30. [30] J. Li, K. Liu, J. Xue, G. Xue, X. Sheng, H. Wang, P. Huo, Y. Yan, J. Catal., 2019, 369, 450-461.

    31. [31] N. Kang, D. Xu, W. Shi, Chin. J. Chem. Eng., 2019, https://doi.org/10.1016/j.cjche.

    32. [32] S. Wang, B. Zeng, C. Li, Chin. J. Catal., 2018, 39, 1219-1227.

    33. [33] A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li, Y. Yan, J. Mater. Chem. A, 2019, 7, 8491-8502.

    34. [34] Y. Chen, A. Xie, J. Cui, J. Lang, Y. Yan, C. Li, J. Dai, Ind. Eng. Chem. Res., 2019, 58, 5186-5194.

    35. [35] T. Jayaramudu, K. Varaprasad, E. R. Sadiku, J. Amalraj, Colloid. Surf. A, 2019, 572, 307-316.

    36. [36] T. Liu, J. Montefort, N. Schick, S. Stanfield, S. Palluconi, J. Crafton, Int. J. Heat. Mass. Tran., 2019, 137, 337-348.

    37. [37] Z. Liu, Y. Liu, P. Xu, Z. Ma, J. Wang, H. Yuan, ACS Appl. Mater. Interfaces, 2017, 9, 20620-20629.

    38. [38] Y. Liang, R. Shang, J. Lu, L. Liu, J. Hu, W. Cui, ACS Appl. Mater. Interfaces, 2018, 10, 8758-8769.

    39. [39] L. Jing, Y. Xu, C. Qin, J. Liu, S. Huang, M. He, H. Xu, H. Li, Mater. Res. Bull., 2017, 95, 607-615.

    40. [40] K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces, 2015, 7, 9023-9030.

    41. [41] L. Sun, C. Liu, J. Li, Y. Zhou, H. Wang, P. Huo, C. Ma, Y. Yan, Chin. J. Catal., 2019, 40, 80-94.

    42. [42] C. Hu, M.-S. Wang, C.-H. Chen, Y.-R. Chen, P.-H. Huang, K.-L. Tung, J. Membr. Sci., 2019, 580, 1-11.

    43. [43] X. Li, C. Liu, D. Wu, J. Li, P. Huo, H. Wang, Chin. J. Catal., 2019, 40, 928-939.

    44. [44] X. Zhang, D. An, D. Feng, F. Liang, Z. Chen, W. Liu, Z. Yang, M. Xian, Appl. Surf. Sci., 2019, 476, 706-715.

    45. [45] W. Yan, L. Yan, C. Jing, Appl. Catal. B, 2019, 244, 475-485.

    46. [46] H. Che, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C. Li, H. Dong, Catal. Sci. Technol., 2018, 8, 622-631.

    47. [47] M. Ge, N. Zhu, Y. Zhao, J. Li, L. Liu, Ind. Eng. Chem. Res., 2012, 51, 5167-5173.

    48. [48] J. Mei, D. Zhang, N. Li, M. Zhang, X. Gu, S. Miao, S. Cui, J. Yang, J. Alloy. Compd., 2018, 749, 715-723.

    49. [49] D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Light-Sci. Appl., 2015, 4, e364.

    50. [50] S. Kang, W. Huang, L. Zhang, M. He, S. Xu, D. Sun, X. Jiang, ACS Appl. Mater. Interfaces, 2018, 10, 13796-13804.

    51. [51] W. Zhang, G. Li, W. Wang, Y. Qin, T. An, X. Xiao, W. Choi, Appl. Catal. B, 2018, 232, 11-18.

    52. [52] Y. Yang, Y. Zhao, Y. Yan, Y. Wang, C. Guo, J. Zhang, J Phys. Chem. B, 2015, 119, 14807-14813.

    53. [53] S. Kang, Y. Fang, Y. Huang, L.-F. Cui, Y. Wang, H. Qin, Y. Zhang, X. Li, Y. Wang, Appl. Catal. B, 2015, 168, 472-482.

    54. [54] J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Carbon, 2014, 80, 213-221.

    55. [55] J. Li, Q. Zhou, Y. Wu, Y. Yuan, Y. Liu, Chemosphere, 2018, 195, 472-482.

    56. [56] S.-Z. Wu, K. Li, W.-D. Zhang, Appl. Surf. Sci., 2015, 324, 324-331.

    57. [57] R. Cheng, L.-j. Shen, J.-h. Yu, S.-y. Xiang, X. Zheng, Catalysts, 2018, 8, 406.

    58. [58] V. G. Deonikar, K. Koteshwara Reddy, W.-J. Chung, H. Kim, J. Photochem. Photobiol. A, 2019, 368, 168-181.

    59. [59] Z. Mao, J. Chen, Y. Yang, L. Bie, B. D. Fahlman, D. Wang, Carbon, 2017, 123, 651-659.

    60. [60] H. Che, J. Chen, K. Huang, W. Hu, H. Hu, X. Liu, G. Che, C. Liu, W. Shi, J. Alloy. Compd., 2016, 688, 882-890.

    61. [61] Z. Wang, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal., 2017, 38, 2021-2029.

    62. [62] M. Ren, Y. Ao, P. Wang, C. Wang, Chem. Eng. J, 2019, 378, 122122.

    63. [63] X. Liu, A. Jin, Y. Jia, T. Xia, C. Deng, M. Zhu, C. Chen, X. Chen, Appl. Surf. Sci., 2017, 405, 359-371.

    64. [64] S. Wang, X. Yang, X. Zhang, X. Ding, Z. Yang, K. Dai, H. Chen, Appl. Surf. Sci., 2017, 391, 194-201.

    65. [65] X. Y. Zhang, S. H. Sun, X. J. Sun, Y. R. Zhao, L. Chen, Y. Yang, W. Lu, D. B. Li, Light-Sci. Appl., 2016, 5, e16130.

    66. [66] D. Jiang, W. Ma, P. Xiao, L. Shao, D. Li, M. Chen, J. Colloid Interface Sci., 2018, 512, 693-700.

    67. [67] W.-J. Ong, L. K. Putri, L.-L. Tan, S.-P. Chai, S.-T. Yong, Appl. Catal. B, 2016, 180, 530-543.

    68. [68] P. Lutsyk, R. Arif, J. Hruby, A. Bukivskyi, O. Vinijchuk, M. Shandura, V. Yakubovskyi, Y. Kovtun, G. A. Rance, M. Fay, Y. Piryatinski, O. Kachkovsky, A. Verbitsky, A. Rozhin, Light-Sci. Appl., 2016, 5, e16028.

    69. [69] Z. Wei, D. Benlin, Z. Fengxia, T. Xinyue, X. Jiming, Z. Lili, L. Shiyin, D. Y. C. Leung, C. Sun, Appl. Catal. B, 2018, 229, 171-180.

    70. [70] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 2009, 25, 10397-10401.

    71. [71] R. Dhanabal, A. Chithambararaj, S. Velmathi, A. C. Bose, J. Environ. Chem. Eng., 2015, 3, 1872-1881.

    72. [72] A. B. Afzal, M. J. Akhtar, M. Nadeem, M. M. Hassan, J. Phys. Chem. C, 2009, 113, 17560-17565.

    73. [73] X.-P. Hu, Y.-L. Li, Y.-Z. Wang, Macromol. Mater. Eng., 2004, 289, 208-212.

    74. [74] M. Mousavi, A. Habibi-Yangjeh, Adv. Powder Technol., 2017, 28, 1540-1553.

    75. [75] D. Jiang, P. Xiao, L. Shao, D. Li, M. Chen, Ind. Eng. Chem. Res., 2017, 56, 8823-8832.

    76. [76] K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, ACS Appl. Mater., 2017, 9, 11577-11586.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  720
  • HTML全文浏览量:  35
文章相关
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-03-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章