Citation: Mian Wang, Yubin Zeng, Guohui Dong, Chuanyi Wang. Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction[J]. Chinese Journal of Catalysis, 2020, 41(10): 1498-1510. doi: S1872-2067(19)63435-2
溴掺杂石墨相碳化氮对Cr(VI)光催化还原性能的提高
为了解决该问题,人们进行了很多尝试来改善石墨相氮化碳光催化材料的光催化活性.研究表明,非金属元素掺杂是一种有效且常用的提高g-C3N4光催化性能的方法.例如,通过高温煅烧三聚氰胺和氧化硼混合物可制备掺B的g-C3N4,g-C3N4结构中的H元素被B取代,B的掺杂大大提高了g-C3N4的光催化活性;利用氟化铵和三聚氰胺合成F掺杂的g-C3N4,F原子与g-C3N4中心或边缘的C键合,将部分sp2杂化的碳原子转化为sp3杂化,降低了材料的平面性,从而使材料的析氢性能和催化苯氧化生成苯酚的能力有了明显提高;使用氯化铵和双氰胺作为前驱体制备Cl掺杂的g-C3N4,Cl元素的引入使g-C3N4晶格变形,带隙变窄,电荷迁移效率提高,光催化效率显著改善.
基于上述结果,并考虑到原子的电负性和大小等因素的影响,我们采用简单的一步法合成了系列Br掺杂的g-C3N4光催化剂CN-BrX.通过X射线衍射(XRD)、红外光谱(FTIR)和电子显微镜(SEM、TEM)等手段对材料的结构进行了表征,并结合元素分析(EA)和光电子能谱(XPS)研究了其形成机理.采用光催化还原Cr(VI)效率、光催化产双氧水浓度以及光催化氧化NO能力评价了CN-BrX的光催化活性,并进行了光催化反应过程动力学拟合和循环实验.通过理论计算(DFT)、紫外-可见漫反射光谱(UV-vis DRS)、荧光光谱(PL)、光电流(PC)和比表面积(BET)等测试分析了材料的光催化活性增强机理,并通过活性物种捕获实验深入探究了其光催化还原Cr(VI)的反应机理.结果表明,CN-BrX(CN-Br30除外)保留了g-C3N4的基本骨架,其中Br元素以取代碳氮杂环中N原子的形式均匀分布于g-C3N4结构中.引入的Br元素可以明显降低材料的禁带宽度,拓宽其可见光响应范围,加快光生载流子的分离效率,并增大其比表面积,从而使得改性材料具有更高的光催化氧化还原活性.此外,在Cr(VI)光催化还原过程中,光生e-,·OH和H2O2均起着重要作用.
English
Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction
-
Key words:
- Graphitic carbon nitride
- / Bromine
- / Doping
- / Cr(VI) reduction
- / Visible light
-
-
[1] X. Yuan, C. Zhou, Q. Jing, Q. Tang, Y. Mu, A.-K. Du, Nanomaterials, 2016, 6, 173/1-173/12.
-
[2] Y. Zheng, Z. Yu, F. Lin, F. Guo, K. A. Alamry, L. A. Taib, A. M. Asiri, X. Wang, Molecules, 2017, 22, 572/1-572/17.
-
[3] Q. Xia, B. Huang, X. Yuan, H. Wang, Z. Wu, L. Jiang, T. Xiong, J. Zhang, G. Zeng, H. Wang, J. Colloid Interface Sci., 2018, 530, 481-492.
-
[4] G. Dong, L. Zhang, J. Phys. Chem. C, 2013, 117, 4062-4068.
-
[5] X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, ACS Sustain. Chem. Eng., 2016, 4, 4055-4063.
-
[6] Y. Zhang, Q. Wang, J. Lu, Q. Wang, Y. Cong, Chemosphere, 2016, 162, 55-63.
-
[7] X. Hu, H. Ji, F. Chang, Y. Luo, Catal. Today, 2014, 224, 34-40.
-
[8] M. Sun, T. Yan, Q. Yan, H. Liu, L. Yan, Y. Zhang, B. Du, RSC Adv., 2014, 4, 19980-19986.
-
[9] W. Y. Huang, N. Liu, X. D. Zhang, M. H. Wu, L. Tang, Appl. Surf. Sci., 2017, 425, 107-116.
-
[10] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal., 2016, 6, 7021-7029.
-
[11] T. Xiong, W. Cen, Y. Zhang, F. Dong, ACS Catal., 2016, 6, 2462-2472.
-
[12] G. Dong, Z. Ai, L. Zhang, Water Res., 2014, 66, 22-30.
-
[13] G. Dong, W. Ho, L. Zhang, Appl. Catal. B-Environ., 2015, 168-169, 490-496.
-
[14] G. Dong, W. Ho, Y. Li, L. Zhang, Appl. Catal. B-Environ., 2015, 174-175, 477-485.
-
[15] Y. Li, L. Yang, G. Dong, W. Ho, Molecules, 2015, 21, 36/1-36/10.
-
[16] S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Appl. Catal. B-Environ., 2016, 190, 26-35.
-
[17] G. Dong, D. Chen, J. Luo, Y. Zhu, Y. Zeng, C. Wang, J. Hazard. Mater., 2017, 335, 66-74.
-
[18] G. Dong, D. L. Jacobs, L. Zang, C. Wang, Appl. Catal. B-Environ., 2017, 218, 515-524.
-
[19] G. Dong, L. Yang, F. Wang, L. Zang, C. Wang, ACS Catal., 2017, 6, 6511-6519.
-
[20] J. Ding, W. Xu, H. Wan, D. Yuan, C. Chen, L. Wang, G. Guan, W. L. Dai, Appl. Catal. B-Environ., 2018, 221, 626-634.
-
[21] K. Wang, Q. Li, B. Liu, B. Cheng, W. K. Ho, J. G. Yu, Appl. Catal. B-Environ., 2015, 176-177, 44-52.
-
[22] Y. Guo, T. Chen, Q. Liu, Z. Zhang, X. Fang, J. Phys. Chem. C, 2016, 120, 25328-25337.
-
[23] Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc., 2010, 132, 6294-6295.
-
[24] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon, 2016, 99, 111-117.
-
[25] G. Dong, K. Zhao, L. Zhang, Chem. Commun., 2012, 48, 6178-6180.
-
[26] W. Zhang, J. Zhang, F. Dong, Y. Zhang, RSC Adv., 2016, 6, 88085-88089.
-
[27] G. Zhang, P. Wang, W. T. Lu, C. Y. Wang, Y. K. Li, C. Ding, J. Gu, X. S. Zheng, F. F. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 28566-28576.
-
[28] G. Chen, S. P. Gao, Chin. Phys. B, 2012, 21, 107101/1-107101/7.
-
[29] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 2010, 26, 3894-3901.
-
[30] M. Xu, B. Chai, J. Yan, H. Wang, Z. Ren, K. W. Paik, Nano, 2016, 11, 1650137/1-1650137/11.
-
[31] C. Liu, Y. Zhang, F. Dong, A. H. Reshak, L. Ye, N. Pinna, C. Zeng, T. Zhang, H. Huang, Appl. Catal. B-Environ., 2017, 203, 465-474.
-
[32] Z. A. Lan, G. Zhang, X. Wang, Appl. Catal. B-Environ., 2016, 192, 116-125.
-
[33] G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Adv. Mater., 2014, 26, 805-809.
-
[34] H. J. Li, B. K. Dai, Z. Yang, S. Wang, W. Sun, L. Sui, D. J. Qian, M. Chen, Phys. Chem. Chem. Phys., 2015, 17, 3309-3315.
-
[35] X. Ding, D. Xiao, L. Ji, D. Jin, K. Dai, Z. Yang, S. Wang, H. Chen, Catal. Sci. Technol., 2018, 8, 3484-3492.
-
[36] S. Patnaik, G. Swain, K. M. Parida, Nanoscale, 2018, 10, 5950-5964.
-
[37] L. Shi, Z. Li, K. Marcus, G. Wang, K. Liang, W. Niu, Y. Yang, Chem. Commun., 2018, 54, 3747-3750.
-
[38] M. Q. Wen, T. Xiong, Z. G. Zang, W. Wei, X. S. Tang, F. Dong, Opt. Express, 2016, 24, 10205-10212.
-
[39] S. Zhang, T. H. Nguyen, Z. Zhang, H. Yue, W. Yang, Nanomaterials, 2017, 7, 12/1-12/11.
-
[40] Y. Li, W. Ho, K. Lv, B. Zhu, S.C. Lee, Appl. Surf. Sci., 2017, 430, 380-389.
-
-
扫一扫看文章
计量
- PDF下载量: 3
- 文章访问数: 472
- HTML全文浏览量: 13

下载: