Three-dimensional Numerical Simulation of Viscoelastic Phase Separation under Shear: the Roles of Bulk and Shear Relaxation Moduli

Jing-yi Chen Zhong Jin Ke-da Yang

Citation:  Jing-yi Chen, Zhong Jin, Ke-da Yang. Three-dimensional Numerical Simulation of Viscoelastic Phase Separation under Shear: the Roles of Bulk and Shear Relaxation Moduli[J]. Chinese Journal of Polymer Science, 2015, 33(11): 1562-1573. doi: 10.1007/s10118-015-1711-2 shu

Three-dimensional Numerical Simulation of Viscoelastic Phase Separation under Shear: the Roles of Bulk and Shear Relaxation Moduli

    通讯作者: Ke-da Yang,
  • 基金项目:

    This work was financially supported by the Around Five Top Priorities of One-Three-Five Strategic Planning, CNIC (No. CNIC_PY-1404).

摘要: The morphological, dynamic and rheological characteristics in the viscoelastic phase separation (VPS) of sheared polymer solutions are investigated by three-dimensional (3D) numerical simulations of viscoelastic model. The simulations are accelerated by graphic process unit (GPU) to break through the limitation of computation power. Firstly, the morphological and dynamic characteristics of VPS under shear are presented by comparing with those in classic phase separation (CPS). The results show that the phase inversion and phase shrink take place in VPS under shear. Then, the roles of bulk and shear relaxation moduli in VPS are investigated in details. The bulk relaxation modulus slows down the phase separation process under shear, but not affects the dynamic path of VPS. The dynamic path can be divided into three stages: freezing stage, growth stage and stable stage. The second overshoot phenomenon in the shear stress is observed, and explained by the breakdown and reform of string structures. The shear modulus affects morphology evolution in the late stage of VPS under shear.

English

  • 
    1. [1]

      Onuki, A., Phase transition dynamics, Cambridge University Press, New York, 2002

    2. [2]

      Tanaka, H. and Araki, T., Chem. Eng. Sci., 2006, 61(7): 2108

    3. [3]

      Yu, W., Li, R.M. and Zho, C.X., Polymer, 2011, 52(12): 2693

    4. [4]

      Yu, W., Zhou, W. and Zhou, C.X., Polymer, 2010, 51(9): 2091

    5. [5]

      Tanaka, H. and Araki, T., Phys. Rev. Lett., 1997, 78(26): 4966

    6. [6]

      Araki, T. and Tanaka, H., Macromolecules, 2001, 34(6): 1953

    7. [7]

      Tanaka, H., Phys. Rev. Lett., 1993, 71(19): 3158

    8. [8]

      Tanaka, H., Phys. Rev. Lett., 1996, 76(5): 787

    9. [9]

      Doi, M. and Onuki, A., J. Phys. II, 1992, 2(8): 1631

    10. [10]

      Tanaka, H., J. Phys. Condes. Matter, 2000, 12(15): R207

    11. [11]

      Tanaka, H., Phys. Rev. E, 1997, 56(4): 4451

    12. [12]

      Zou, F.S., Dong, X., Liu, W., Yang, J., Lin, D.M., Liang, A.M., Li, W. and Han, C.C., Macromolecules, 2012, 45(3): 1692

    13. [13]

      Lodge, A.S., Polymer, 1961, 2(2): 195

    14. [14]

      Kume, T., Hattori, T. and Hashimoto, T., Macromolecules, 1997, 30(3): 427

    15. [15]

      Dwivedi, V., Ahluwalia, R., Lookman, T. and Saxena, A., Phys. Rev. E, 2004, 70(1): 011506

    16. [16]

      Imaeda, T., Furukawa, A. and Onuki, A., Phys. Rev. E, 2004, 70(5): 051503

    17. [17]

      Zhang, Z.L., Zhang, H.D. and Yang, Y.L., J. Chem. Phys., 2000, 113(18): 8348

    18. [18]

      Zhang, Z.L., Zhang, H.D., Yang, Y.L., Vinckier, I. and Laun, H.M., Macromolecules, 2001, 34(5): 1416

    19. [19]

      Zhang, Z.L., Zhang, H.D. and Yang, Y.L., J. Chem. Phys., 2001, 115(16): 7783

    20. [20]

      Buxton, G.A. and Balazs, A.C., Interf. Sci., 2003, 11(2): 175

    21. [21]

      Yang, K., Su, J. and Guo, H., J. Comput. Chem., 2012, 33(18): 1564

    22. [22]

      Brochard, F., J. De Phys., 1983, 44(1): 39

    23. [23]

      Brochard, F. and Degennes, P.G., Macromolecules, 1977, 10(5): 1157

    24. [24]

      Tanaka, H. and Araki, T., Phys. Rev. Lett., 2000, 85(6): 1338

    25. [25]

      Whitmer, J.K. and Luijten, E., J. Phys. Chem. B, 2011, 115(22): 7294

    26. [26]

      Cao, X.J., Cummins, H.Z. and Morris, J.F., J. Collid Interf. Sci., 2012, 368: 86

    27. [27]

      Onuki, A., J. Phys. Soc. Jpn., 1997, 66(6): 1836

    28. [28]

      Kobayashi, H. and Yamamoto, R., J. Chem. Phys., 2011, 134(6): 064110

    29. [29]

      Cao, Y., Zhang, H.D., Xiong, Z. and Yang, Y.L., Macromol. Theory Simul., 2001, 10(4): 314

    30. [30]

      Huo, Y.L., Zhang, H.D. and Yang, Y.L., Macromolecules, 2003, 36(14): 5383

    31. [31]

      Zhang, J.N., Zhang, Z.L., Zhang, H.D. and Yang, Y.L., Phys. Rev. E, 2001, 64(5): 051510

    32. [32]

      Zhou, D., Zhang, P.W. and E, W.N., Phys. Rev. E, 2006, 73(6): 061801

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1369
  • HTML全文浏览量:  16
文章相关
  • 发布日期:  2015-11-05
  • 收稿日期:  2015-04-16
  • 修回日期:  2015-07-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章