Hydrochloric Acid-Promoted Copper/Iron-Cocatalyzed Deesterifica-tive Oxyphosphorylation of 2-Substituted Acrylates with H-Phosphine Oxides

Huabin Wang Qiang Fu Zhijie Zhang Ming Gao Jianxin Ji Dong Yi

Citation:  Wang Huabin, Fu Qiang, Zhang Zhijie, Gao Ming, Ji Jianxin, Yi Dong. Hydrochloric Acid-Promoted Copper/Iron-Cocatalyzed Deesterifica-tive Oxyphosphorylation of 2-Substituted Acrylates with H-Phosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2018, 38(8): 1977-1984. doi: 10.6023/cjoc201805027 shu

盐酸促进、铜/铁共催化2-取代丙烯酸酯与膦氧类化合物的脱酯氧膦化反应

    通讯作者: 易东, yidong@swmu.edu.cn
  • 基金项目:

    中国科学院战略生物资源服务网络计划 ZSTH-001

    国家自然科学基金 21572217

    国家自然科学基金(No.21572217)、中国科学院战略生物资源服务网络计划(No.ZSTH-001)和西南医科大学校级科研基金(No.2017-ZRZD-020)资助项目

    西南医科大学校级科研基金 2017-ZRZD-020

摘要: 发展了一种新型的盐酸促进、铜/铁共催化2-取代丙烯酸酯与膦氧类化合物脱酯氧膦化反应构建β-羰基氧膦化合物,并且该反应抑制了羟膦化产物的形成.通过这种简便且实用的方法,可选择性断裂C(sp2)-C(C=O)得到结构多样化的β-羰基氧膦化合物.这类反应具有底物适用范围广泛、官能团耐受性好且反应条件温和等优点.

English

  • β-Ketophosphine oxides are a class of versatile organophosphorus compounds, which exhibit a wide range of applications in many areas such as valuable synthetic intermediates for the construction of α, β-unsaturated carbonyl compounds, [1] potential bidentate ligands, [2] and transition elements extractants.[3] Therefore, this has led to the increasing interest in the development of novel synthetic strategies for affording β-ketophosphine oxides in recent years. In particular, one of the most powerful tools is organophosphorus radical-triggered phosphorylation reaction of various radical acceptors, including alkenes, [4] alkynes, [5] cinnamic/alkynyl carboxylic acids, [6] cinnamyl/alkynyl carboxylates, [7] α, β-unsaturated carbonyl or 1, 3-dicarbonyl compounds, [8] vinyl azides, [9] ketone O-acetyl oximes or α-substituted olefins generated from ketones.[10] A great feature of these methods is to realize the transformation of various functional moieties into β-ketophosphine oxide scaffolds. However, despite considerable progress, the development of mild, convenient, efficient methods to access β-ketophosphine oxides via the phosphorylation of radical acceptors containing other functional moieties is still highly desirable.

    2-Substituted acrylates, a kind of important and readily-available electron-deficient alkenes, have drawn much attention for their application as a potential radical acceptor for the construction of structurally diverse esters.[11] Very recently, we disclosed a simple and practical coppercatalyzed direct hydroxyphosphorylation of 2-substituted acrylates with H-phosphine oxides to access β-hydroxy-phosphine oxides (Scheme 1).[11k] At the same time, one deesterificative oxyphosphorylation byproduct β-ketophos- phine oxide was unexpectedly formed. As we know, selective catalysis affording diverse products from the same starting materials is a powerful tool for divergent synthesis.[12] Therefore, in order to let the more valuable byproduct β-ketophosphine oxide become as major one, we wish to control the product selectivity by the modification of the reaction conditions. To the best of our knowledge, an example on β-ketophosphine oxide formation through deesterificative oxyphosphorylation of 2-substituted acrylates is yet to be reported. In continuation of our interest in difunctionalization of unsaturated hydrocarbons and the construction of organophosphorus compounds, [13] we report herein an efficient, selective and practical process for the synthesis of β-ketophosphine oxides via hydrochloric acid-promoted copper/iron-cocatalyzed deesterificative oxyphosphorylation of 2-substituted acrylates with H-phos- phine oxides and dioxygen (Scheme 1).

    Scheme 1

    Scheme 1.  Phosphorylation of 2-substituted acrylates

    We commenced our study by investigating the reaction between ethyl 2-phenylacrylate (1a) and diphenylphosphine oxide (2a) in order to generate a deesterificative oxyphosphorylation product, and the results are summarized in Table 1. Firstly, only low yields were obtained for the desired product 3a when the reaction temperature was elevated to 40 or 60 ℃ under the standard conditions for the synthesis of β-hydroxyphosphine oxides according to our previous report (Entries 1, 2).[11k] Gratifyingly, reaction efficiency was significantly improved when the model reaction was performed at 40 ℃ for 3 h by using hydrochloric acid (aq., 1 mol/L) instead of Et3N, indicating that acid could efficiently promote the deesterificative oxyphosphorylation of 2-substituted acrylates and suppress the direct hydroxyphosphorylation reaction (Entries 3, 4). Encouraged by this result, a variety of acids were examined, and the results showed that hydrochloric acid (aq., 1 mol/L) was the most suitable additive to promote the model reaction (Entries 5~10). To further improve the yield, other copper salts such as CuCl2, CuBr, Cu(OTf)2 and Cu(acac)2 were examined, among which CuBr2 was found to be still the most efficient catalyst (Entries 11~14). When a cocatalyst including Ag, Pd, Au and Fe salt was introduced into the reaction system, and Fe salts, especially FeCl3, were found to be the optimal cocatalyst, with the yield of 3a being improved to 77% (Entries 15~20). However, a significantly lower yield of 3a was obtained when the reaction was performed in the absence of the copper salt, suggesting that copper/iron-cocatalysis was one of the essential prerequisites for this deesterificative oxyphosphorylation (Entry 21). After an extensive screening of the reaction parameters (see Table 1 and the Supporting Information), the best yield of 3a (77%) was obtained by employing 1a (0.5 mmol), 2a (1.0 mmol), CuBr2 (5 mol%), FeCl3 (10 mol%), and HCl (aq., 0.15 mmol, 1 mol/L) in N, N-dimethylformamide (DMF) at 40 ℃ for 3 h under an oxygen atmosphere (Entry 19).

    Table 1

    Table 1.  Optimization of reaction conditionsa
    下载: 导出CSV
    Entry Catal. Cocatal. Additive Yieldb/%
    1 CuBr2 - Et3N 19c
    2 CuBr2 - Et3N 21d
    3 CuBr2 - - 22
    4 CuBr2 - HCl (aq., 1 mol/L) 49
    5 CuBr2 - HCOOH 29
    6 CuBr2 - CH3COOH 27
    7 CuBr2 - PhCH2COOH 24
    8 CuBr2 - Salicylic acid 22
    9 CuBr2 - PhB(OH)2 31
    10 CuBr2 - TsOH 21
    11 CuCl2 - HCl (aq., 1 mol/L) 45
    12 CuBr - HCl (aq., 1 mol/L) 42
    13 Cu(OTf)2 - HCl (aq., 1 mol/L) 34
    14 Cu(acac)2 - HCl (aq., 1 mol/L) 38
    15 CuBr2 AgCl HCl (aq., 1 mol/L) 39
    16 CuBr2 PdCl2 HCl (aq., 1 mol/L) 40
    17 CuBr2 AuCl3 HCl (aq., 1 mol/L) 42
    18 CuBr2 FeBr3 HCl (aq., 1 mol/L) 74
    19 CuBr2 FeCl3 HCl (aq., 1 mol/L) 77
    20 CuBr2 FeCl2 HCl (aq., 1 mol/L) 51
    21 - FeCl3 HCl (aq., 1 mol/L) 54

    Under the optimized reaction conditions, the substrate scope and limitations of this deesterificative oxyphosphorylation were investigated. As demonstrated in Table 2, phenethyl 2-phenylacrylate as substrate could also give the desired product 3a in 71% yield. Generally, a variety of 2-arylacrylate and its derivatives with electron-donating or electron-withdrawing substituents at the ortho-, meta- or para-positions of the phenyl rings were suitable for this protocol, affording the corresponding desired products 3b~3q in moderate to good yields. Notably, various functional groups, such as methoxy (3b, 3c), halogens (3g~3m), trifluoromethyl (3n), ester (3o), cyano (3p) and nitro (3q), were found to be well tolerated in this oxyphosphorylation transformation. Furthermore, ethyl 2-(naphthalen-2- yl)acrylate and ethyl 3-(pyridin-2-yl)acrylate were also good candidates in the present reaction and gave the corresponding desired products 3r~3s in 67% and 86% yields, respectively. However, 2-alkylacrylate derivatives such as methyl methacrylate and 3-methylenedihydro-2(3H)- furanone could generate the corresponding target products 3t~3u with relatively low yields of 24% and 35%.

    Table 2

    Table 2.  Screening of substrate scopea, b
    下载: 导出CSV
    a Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), CuBr2 (5 mol%), FeCl3 (10 mol%), HCl (aq., 0.15 mmol, 1 mol/L), DMF (2.0 mL), O2 (balloon), 40 ℃, 3 h.
    b Isolated yields based on 1. c Phenethyl 2-phenylacrylate instead of ethyl 2-phenylacrylate. d The hydroxyphosphorylation product 3t' was obtained in 36% yield.
    e Reaction conditions: Et3N (0.5 mmol) instead of HCl (aq., 0.15 mmol, 1 mol/L).

    Next, the scope of this deesterificative oxyphosphorylation was further expanded to other H-phosphine oxides. In addition to diphenylphosphine oxide (2a), methyl-, methoxy-, and fluoro-substituted diphenylphosphine oxides could also be converted into the corresponding β-ketophosphine oxides 3v~3x in good yields. Nevertheless, when diethyl phosphonate was used as substrate, no desired product 3y was observed under the optimized conditions due to its low reactivity. Pleasingly, when 1.0 equiv. of Et3N was added instead of hydrochloric acid (aq., 1 mol/L), β-ketophosphonate 3y was successfully afforded in a satisfactory yield.

    To showcase the practical utility of the deesterificative oxyphosphorylation of 2-substituted acrylates, the model reaction between 1a and 2a was performed on a gram scale under the optimized conditions. As shown in Eq. 1, β-ketophosphine oxide 3a could be obtained in a satisfactory yield of 71% (2.27 g).

    (1)

    To rationalize the mechanism for the deesterificative oxyphosphorylation of 2-substituted acrylates, several control experiments were performed (Scheme 2). No reaction occurred when only ethyl 2-phenylacrylate (1a) or β-hydroxyphosphine oxide (5a) was employed under the optimized conditions, which implied that the possibility of the direct conversion of 4a or 5a into 3a could be fully excluded in the present oxyphosphorylation (Scheme 2). Subsequently, the model reaction was almost suppressed by the addition of 2, 2, 6, 6-tetramethyl-1-piperidinyl-oxy (TEMPO) as a radical scavenger, indicating that this transformation might involve a radical pathway (Scheme 2). Furthermore, a relatively lower yield of the target product 3a (51%) could also be obtained under an air atmosphere, but none of 3a was observed when O2 was replaced by N2, suggesting that molecular dioxygen was indispensable for this process (Scheme 2).

    Scheme 2

    Scheme 2.  Control experiments

    Based on the aforementioned results, preceding mechanistic studies, [4a, 11k, 14] and LC-HRMS analysis (see the Supporting Information), a tentative mechanism of this deesterificative oxyphosphorylation was proposed accordingly as indicated in Scheme 3. It was well known that the copper(Ⅱ) species could be oxidized to the more electrophilic copper(Ⅲ) species in the presence of iron(Ⅲ). Initially, the reaction proceeded by a single electron transfer (SET) from Ph2P(O)H (2a) to copper(Ⅱ/Ⅲ) species and concomitant proton transfer (PT) under O2, affording corresponding phosphorus radical A and CuⅡ/Ⅲ-(•OOH) species. Then, the regioselective addition of phosphorus radical A to ethyl 2-phenylacrylate (1a) generated a reactive alkyl radical B, which interacted with CuⅡ/Ⅲ-(•OOH) species to give hydroperoxide intermediate C. With the help of acid, the resulting intermediate C could in situ generate a dioxetanone D through the intramolecular ester exchange, which subsequently underwent decarboxylation process to release CO2 and the final product 3a, along with peroxide cleavage. In particular, intermediates C and D were detected by LC-HRMS in the developed reaction system.

    Scheme 3

    Scheme 3.  Tentative reaction mechanism

    In summary, an unprecedented copper/iron-cocatalyzed deesterificative oxyphosphorylation of 2-substituted acrylates with H-phosphine oxides and dioxygen has been developed for the construction of β-ketophosphine oxides. In this methodology, a cheap and readily available hydrochloric acid is employed to promote the deesterification oxyphosphorylation process and inhibit the preceding hydroxylphosphorylation process. The developed protocol provides a selective and practical method for the synthesis of a library of valuable β-ketophosphine oxides with a wide range of substrate scope and good functional group tolerance under mild conditions by using readily available starting materials, along with chemoselective cleavage of C(sp2)—C(C=O) bonds. A tentative radical-initiated mechanism is proposed on the basis of preliminary mechanistic studies. Further detailed mechanism and synthetic applications of this methodology are ongoing in our laboratory.

    1H NMR, 13C NMR and 31P NMR were recorded in CDCl3 on a bruker advance Ⅲ 400 M NMR with tetramethylsilane (TMS) as internal standard at room temperature. HRMS and LC-HRMS analyses were obtained on a Waters Vion® IMS QT of mass spectrometer and a Waters UPLC-Xevo TQ MS (PDA Detector)/Waters Vion® IMS QT of mass spectrometer by ESI method, respectively. Flash column chromatography was carried out on silica gel (100~200 mesh). All solvents were purified by standard methods. All chemicals were purchased from TCI, J & K and Energy chemical companies, and used without further purification. The 2-substituted acrylates and H-phosphine oxides were stored at 4 ℃ before used.

    2-Substituted acrylate (0.5 mmol) was added to a 50 mL round-bottom flask with H-phosphine oxide (1.0 mmol), CuBr2 (6 mg, 5 mol%), FeCl3 (8 mg, 10 mol%), HCl (aq., 0.15 mmol, 1 mol/L) in DMF (2 mL) at 40 ℃ under O2 (balloon). The reaction mixture was stirred for 3 h. Upon completion of the reaction, saturated sodium bicarbonate solution (10 mL) was added to the reaction mixture, and the resulting mixture was extracted with ethyl acetate (8 mL×3). The combined organic layers were washed with water (8 mL×2) and brine (8 mL×2), dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure, and purified by flash column chromatography using petroleum ether/ethyl acetate (V/V=3:1~1:2) to provide the corresponding product.

    2-(Diphenylphosphoryl)-1-phenylethanone (3a): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.01~8.00 (m, 2H), 7.85~7.81 (m, 4H), 7.53~7.43 (m, 9H), 4.16 (d, J=15.3 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 192.83 (d, J=5.7 Hz), 136.98, 133.61, 132.17 (d, J=2.7 Hz), 131.99 (d, J=103.3 Hz), 131.13 (d, J=9.8 Hz), 129.26, 128.64 (d, J=12.4 Hz), 128.54, 43.34 (d, J=57.9 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.87; HRMS (ESI) calcd for C20H17NaO2P [M+Na]+: 343.0858, found 343.0862.

    2-(Diphenylphosphoryl)-1-(3-methoxyphenyl)ethanone (3b): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.83~7.78 (m, 4H), 7.59 (d, J=7.7 Hz, 1H), 7.49~7.44 (m, 7H), 7.33~7.29 (m, 1H), 7.09~7.06 (m, 1H), 4.14 (d, J=15.3 Hz, 2H), 3.79 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 192.64 (d, J=5.7 Hz), 159.68, 138.34, 132.14 (d, J=2.8 Hz), 132.05 (d, J=103.3 Hz), 131.12 (d, J=9.8 Hz), 129.55, 128.62 (d, J=12.3 Hz), 122.20, 120.51, 112.78, 55.42, 43.41 (d, J=58.2 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.02; HRMS (ESI) calcd for C21H20NaO3P [M+Na]+: 373.0964, found 373.0967.

    2-(Diphenylphosphoryl)-1-(4-methoxyphenyl)ethan-1-one (3c): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.01~7.99 (m, 2H), 7.85~7.80 (m, 4H), 7.53~7.45 (m, 6H), 6.91~6.89 (m, 2H), 4.11 (d, J=15.3 Hz, 2H), 3.86 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 191.04 (d, J=5.5 Hz), 163.97, 132.11 (d, J=2.9 Hz), 132.05 (d, J=103.1 Hz), 131.78, 131.13 (d, J=9.8 Hz), 130.14, 128.60 (d, J=12.3 Hz), 113.72, 55.51, 43.17 (d, J=58.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.15; HRMS (ESI) calcd for C21H20NaO3P [M+Na]+: 373.0964, found 373.0967.

    2-(Diphenylphosphoryl)-1-(o-tolyl)ethan-1-one    (3d): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.89~7.78 (m, 5H), 7.53~7.46 (m, 6H), 7.37~7.33 (m, 1H), 7.29~7.25 (m, 1H), 7.23~7.15 (m, 1H), 4.15 (d, J=15.1 Hz, 2H), 2.32 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 195.68 (d, J=5.6 Hz), 138.96, 137.45, 132.16 (d, J=103.1 Hz), 132.09 (d, J=2.8 Hz), 131.95, 131.83, 131.10 (d, J=9.8 Hz), 130.31, 128.62 (d, J=12.3 Hz), 125.78, 45.64 (d, J=58.7 Hz), 21.27; 31P NMR (162 MHz, CDCl3) δ: 27.31; HRMS (ESI) calcd for C21H19NaO2P [M+Na]+: 357.1015, found 357.1019.

    2-(Diphenylphosphoryl)-1-(m-tolyl)ethan-1-one    (3e): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.83~7.78 (m, 5H), 7.73 (s, 1H), 7.52~7.42 (m, 6H), 7.33~7.26 (m, 2H), 4.14 (d, J=15.3 Hz, 2H), 2.34 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 192.99 (d, J=5.5 Hz), 138.28, 137.03, 134.41, 132.13 (d, J=2.8 Hz), 132.08 (d, J=103.2 Hz), 131.14 (d, J=9.8 Hz), 129.56, 128.61 (d, J=12.3 Hz), 128.45, 126.59, 43.21 (d, J=58.8 Hz), 21.30; 31P NMR (162 MHz, CDCl3) δ: 26.98; HRMS (ESI) calcd for C21H19NaO2P [M+Na]+: 357.1015, found 357.1019.

    2-(Diphenylphosphoryl)-1-(p-tolyl)ethan-1-one    (3f): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.90~7.79 (m, 6H), 7.51~7.43 (m, 6H), 7.21~7.17 (m, 2H), 4.35 (d, J=15.3 Hz, 2H), 2.34 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 192.32 (d, J=4.8 Hz), 144.55, 134.58, 132.15 (d, J=2.7 Hz), 132.12 (d, J=101.5 Hz), 131.11 (d, J=9.7 Hz), 129.40, 129.22, 128.59 (d, J=12.3 Hz), 43.13 (d, J=58.4 Hz), 21.69; 31P NMR (162 MHz, CDCl3) δ: 27.01; HRMS (ESI) calcd for C21H19NaO2P [M+Na]+: 357.1015, found 357.1019.

    2-(Diphenylphosphoryl)-1-(2-fluorophenyl)ethan-1-one (3g): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.80~7.76 (m, 4H), 7.73~7.69 (m, 1H), 7.53~7.49 (m, 2H), 7.47~7.42 (m, 5H), 7.16~7.12 (m, 1H), 7.05~7.00 (m, 1H), 4.25 (d, J=14.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 190.83 (dd, J=6.0, 2.9 Hz), 161.61 (d, J=254.7 Hz), 135.15 (d, J=9.4 Hz), 132.16 (d, J=103.3 Hz), 132.12 (d, J=2.8 Hz), 131.08 (d, J=9.8 Hz), 130.95 (d, J=1.7 Hz), 128.61 (d, J=12.3 Hz), 126.11 (d, J=11.1 Hz), 124.49 (d, J=3.4 Hz), 116.60 (d, J=23.7 Hz), 46.70 (dd, J=59.3, 7.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.75; HRMS (ESI) calcd for C20H16FNaO2P [M+Na]+: 361.0764, found 361.0769.

    2-(Diphenylphosphoryl)-1-(3-fluorophenyl)ethan-1-one (3h): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.83~7.78 (m, 5H), 7.66~7.63 (m, 1H), 7.54~7.43 (m, 6H), 7.42~7.38 (m, 1H), 7.26~7.21 (m, 1H), 4.13 (d, J=15.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.69 (dd, J=5.7, 2.3 Hz), 162.65 (d, J=248.0 Hz), 139.03 (d, J=6.4 Hz), 132.29 (d, J=3.0 Hz), 131.76 (d, J=104.2 Hz), 131.07 (d, J=9.8 Hz), 130.25 (d, J=7.6 Hz), 128.70 (d, J=12.4 Hz), 125.35 (d, J=2.9 Hz), 120.64 (d, J=21.5 Hz), 115.64 (d, J=22.7 Hz), 43.58 (d, J=57.1 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.71; HRMS (ESI) calcd for C20H16FNaO2P [M+Na]+: 361.0764, found 361.0767.

    2-(Diphenylphosphoryl)-1-(4-fluorophenyl)ethan-1-one (3i): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.08~8.04 (m, 2H), 7.84~7.79 (m, 4H), 7.56~7.52 (m, 2H), 7.50~7.46 (m, 4H), 7.10~7.02 (m, 2H), 4.12 (d, J=15.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.23 (d, J=5.6 Hz), 166.09 (d, J=256.1 Hz), 133.45 (d, J=2.9 Hz), 132.28 (d, J=2.9 Hz), 132.18 (d, J=9.6 Hz), 131.79 (d, J=102.1 Hz), 131.08 (d, J=9.8 Hz), 128.71 (d, J=12.3 Hz), 115.68 (d, J=22.0 Hz), 43.56 (d, J=56.9 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.74; HRMS (ESI) calcd for C20H16FNaO2P [M+Na]+: 361.0764, found 361.0768.

    1-(3, 5-Dichlorophenyl)-2-(diphenylphosphoryl) ethan-1- one (3j): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.80~7.75 (m, 4H), 7.58~7.54 (m, 2H), 7.52~7.47 (m, 5H), 7.34 (d, J=1.8 Hz, 1H), 7.27~7.24 (m, 1H), 4.22 (d, J=14.6 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 193.73 (d, J=5.7 Hz), 137.90, 137.11, 132.26 (d, J=2.7 Hz), 132.04, 131.67 (d, J=103.3 Hz), 131.24, 130.98 (d, J=9.9 Hz), 130.17, 128.71 (d, J=12.4 Hz), 127.40, 46.75 (d, J=57.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.74; HRMS (ESI) calcd for C20H15Cl2NaO2P [M+Na]+: 411.0079, found 411.0073.

    1-(3-Chlorophenyl)-2-(diphenylphosphoryl)ethan-1-one (3k): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.95~7.92 (m, 2H), 7.84~7.79 (m, 4H), 7.58~7.53 (m, 3H), 7.51~7.47 (m, 4H), 7.39 (t, J=7.8 Hz, 1H), 4.14 (d, J=15.3 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.70 (d, J=5.7 Hz), 138.47, 134.87, 133.49, 132.31 (d, J=2.8 Hz), 131.73 (d, J=103.6 Hz), 131.09 (d, J=9.8 Hz), 129.89, 128.98, 128.71 (d, J=12.4 Hz), 127.67, 43.61 (d, J=56.8 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.61; HRMS (ESI) calcd for C20H16ClNaO2P [M+Na]+: 377.0469, found 377.0472.

    1-(4-Chlorophenyl)-2-(diphenylphosphoryl)ethan-1-one (3l): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.99~7.94 (m, 2H), 7.83~7.77 (m, 4H), 7.53~7.41 (m, 6H), 7.40~7.36 (m, 2H), 4.12 (d, J=15.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.65 (d, J=5.7 Hz), 140.17, 135.30, 132.32 (d, J=2.8 Hz), 131.76 (d, J=102.1 Hz), 131.06 (d, J=9.8 Hz), 130.78, 128.85, 128.70 (d, J=12.3 Hz), 43.54 (d, J=56.5 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.66; HRMS (ESI) calcd for C20H16ClNaO2P [M+Na]+: 377.0469, found 377.0473.

    1-(4-Bromophenyl)-2-(diphenylphosphoryl)ethan-1-one (3m): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.91~7.88 (m, 2H), 7.83~7.78 (m, 4H), 7.59~7.54 (m, 4H), 7.49~7.48 (m, 4H), 4.11 (d, J=15.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.86 (d, J=5.6 Hz), 135.70, 132.28 (d, J=2.5 Hz), 131.84, 131.76 (d, J=102.0 Hz), 131.06 (d, J=9.8 Hz), 130.86, 129.09, 128.71 (d, J=12.3 Hz), 43.62 (d, J=56.6 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.68; HRMS (ESI) calcd for C20H17BrNaO2P [M+Na]+: 420.9963, found 420.9966.

    2-(Diphenylphosphoryl)-1-(3-(trifluoromethyl) phenyl)ethan-1-one (3n): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.26 (d, J=7.8 Hz, 1H), 8.18 (s, 1H), 7.83~7.77 (m, 5H), 7.60~7.52 (m, 3H), 7.50~7.45 (m, 4H), 4.18 (d, J=15.2 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.75 (d, J=5.7 Hz), 137.42, 132.79, 132.40 (d, J=2.9 Hz), 131.60 (d, J=103.3 Hz), 131.08 (q, J=33.3 Hz), 131.07 (d, J=9.9 Hz), 129.90 (q, J=3.7 Hz), 129.30, 128.76 (d, J=12.4 Hz), 125.77 (q, J=3.8 Hz), 123.58 (q, J=272.6 Hz), 43.59 (d, J=56.4 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.65; HRMS (ESI) calcd for C21H17F3O2P [M+H]+: 389.0913, found 389.0918.

    Methyl 4-(2-(diphenylphosphoryl)acetyl) benzoate (3o): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.02~7.97 (m, 4H), 7.74~7.71 (m, 6H), 7.49~7.39 (m, 6H), 4.11 (d, J=15.2 Hz, 2H), 3.87 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 192.44 (d, J=5.7 Hz), 166.05, 139.96, 134.06, 132.25 (d, J=2.8 Hz), 131.59 (d, J=103.6 Hz), 130.99 (d, J=9.9 Hz), 129.62, 129.08, 128.64 (d, J=12.4 Hz), 52.42, 43.64 (d, J=56.9 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.72; HRMS (ESI) calcd for C22H19NaO4P [M+Na]+: 401.0913, found 401.0916.

    4-(2-(Diphenylphosphoryl)acetyl)benzonitrile    (3p): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.16 (d, J=2.9 Hz, 2H), 7.83~7.74 (m, 6H), 7.58~7.49 (m, 6H), 4.16 (d, J=15.1 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.77 (d, J=5.8 Hz), 139.78, 132.48 (d, J=2.9 Hz), 132.35, 131.44 (d, J=103.9 Hz), 131.00 (d, J=9.9 Hz), 129.76, 128.82 (d, J=12.4 Hz), 117.90, 116.72, 44.11 (d, J=55.4 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.62; HRMS (ESI) calcd for C21H16NNaO2P [M+Na]+: 368.0811, found 368.0816.

    2-(Diphenylphosphoryl)-1-(4-nitrophenyl)ethanone (3q): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.28~8.21 (m, 4H), 7.84~7.79 (m, 4H), 7.60~7.49 (m, 6H), 4.20 (d, J=15.0 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.65 (d, J=5.7 Hz), 150.46, 141.24, 132.53 (d, J=2.9 Hz), 131.39 (d, J=103.8 Hz), 131.02 (d, J=9.9 Hz), 130.46, 128.85 (d, J=12.4 Hz), 123.69, 44.30 (d, J=55.2 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.91; HRMS (ESI) calcd for C20H17NO4P [M+H]+: 366.0890, found 366.0893.

    2-(Diphenylphosphoryl)-1-(naphthalen-2-yl)ethan-1-one (3r): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.57 (s, 1H), 7.99~7.95 (m, 2H), 7.88~7.81 (m, 6H), 7.61~7.44 (m, 8H), 4.29 (d, J=15.3 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 192.68 (d, J=5.5 Hz), 135.73, 134.33, 132.36, 132.19 (d, J=2.8 Hz), 132.00 (d, J=103.3 Hz), 131.95, 131.17 (d, J=9.8 Hz), 129.98, 128.86, 128.66 (d, J=12.3 Hz), 128.36, 127.67, 126.77, 124.14, 43.40 (d, J=58.1 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.31; HRMS (ESI) calcd for C24H29NaO2P [M+Na]+: 393.1015, found 393.1019.

    2-(Diphenylphosphoryl)-1-(pyridin-3-yl)ethan-1-one(3s): White solid. 1H NMR (400 MHz, CDCl3) δ: 9.14 (s, 1H), 8.81~8.64 (m, 1H), 8.41~8.26 (m, 1H), 7.92~7.69 (m, 4H), 7.53~7.36 (m, 7H), 4.15 (d, J=14.8 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 191.97 (d, J=5.9 Hz), 153.71, 150.41, 136.69, 132.39 (d, J=1.9 Hz), 132.29, 131.60 (d, J=103.8 Hz), 131.03 (d, J=9.9 Hz), 128.77 (d, J=12.3 Hz), 123.42, 43.73 (d, J=55.7 Hz); 31P NMR (162 MHz, CDCl3) δ: 26.62; HRMS (ESI) calcd for C19H16NNaO2P [M+Na]+: 344.0811, found 344.0815.

    1-(Diphenylphosphoryl)propan-2-one (3t): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.72~7.68 (m, 4H), 7.51~7.40 (m, 6H), 3.55 (d, J=14.8 Hz, 2H), 2.26 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 201.06 (d, J=5.1 Hz), 132.39 (d, J=2.9 Hz), 131.39 (d, J=102.0 Hz), 130.93 (d, J=9.9 Hz), 128.89 (d, J=12.3 Hz), 48.33 (d, J=56.3 Hz), 32.77; 31P NMR (162 MHz, CDCl3) δ: 26.31; HRMS (ESI) calcd for C15H15NaO2P [M+Na]+: 281.0702, found 281.0705.

    Methyl 2-(diphenylphosphoryl)-2-hydroxy-propanoate (3t')[11k]: Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.69~7.61 (m, 4H), 7.47~7.35 (m, 6H), 5.34 (s, 1H), 3.21 (s, 3H), 2.89 (dd, J=15.0, 8.2 Hz, 1H), 2.67 (dd, J=15.0, 11.2 Hz, 1H), 1.45 (d, J=2.0 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.82 (d, J=4.3 Hz), 133.45 (d, J=100.7 Hz), 132.00 (d, J=2.8 Hz), 132.02 (d, J=2.8 Hz), 131.92 (d, J=99.4 Hz), 130.86 (d, J=9.7 Hz), 130.24 (d, J=9.7 Hz), 128.69 (d, J=12.0 Hz), 128.59 (d, J=12.0 Hz), 73.54 (d, J=5.7 Hz), 52.10, 38.69 (d, J=69.4 Hz), 28.74 (d, J=11.5 Hz); 31P NMR (162 MHz, CDCl3) δ: 31.24.

    1-(Diphenylphosphoryl)-4-hydroxybutan-2-one (3u): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.83~7.72 (m, 4H), 7.63~7.56 (m, 2H), 7.55~7.48 (m, 4H), 3.87 (t, J=5.3 Hz, 2H), 3.69 (d, J=14.6 Hz, 2H), 2.91 (t, J=5.4 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 203.61 (d, J=5.7 Hz), 132.48 (d, J=2.9 Hz), 131.52 (d, J=103.9 Hz), 130.88 (d, J=9.9 Hz), 128.87 (d, J=12.4 Hz), 57.92, 48.09, 47.04 (d, J=56.3 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.94; HRMS (ESI) calcd for C16H17NaO3P [M+Na]+: 311.0808, found 311.0814.

    2-(Di-p-tolylphosphoryl)-1-phenylethan-1-one (3v): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.02~8.00 (m, 2H), 7.73~7.66 (m, 4H), 7.56~7.53 (m, 1H), 7.44~7.41 (m, 2H), 7.28~7.26 (m, 4H), 4.12 (d, J=15.3 Hz, 2H), 2.39 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 193.05 (d, J=5.6 Hz), 142.62 (d, J=2.9 Hz), 137.07, 133.49, 131.12 (d, J=10.1 Hz), 129.35 (d, J=11.9 Hz), 129.29, 128.83 (d, J=105.9 Hz), 128.49, 43.58 (d, J=57.7 Hz), 21.60; 31P NMR (162 MHz, CDCl3) δ: 27.28; HRMS (ESI) calcd for C22H21NaO2P [M+Na]+: 371.1171, found 371.1168.

    2-(Bis(4-methoxyphenyl)phosphoryl)-1-phenyl-ethan-1- one (3w): White solid. 1H NMR (400 MHz, CDCl3) δ: 8.01~8.00 (m, 2H), 7.75~7.70 (m, 4H), 7.57~7.53 (m, 1H), 7.45~7.42 (m, 2H), 6.98~6.96 (m, 4H), 4.11 (d, J=15.6 Hz, 2H), 3.85 (s, 6H); 13C NMR (101 MHz, CDCl3) δ: 193.25 (d, J=5.5 Hz), 162.55 (d, J=2.9 Hz), 137.08, 133.49, 133.02 (d, J=11.3 Hz), 129.28, 128.50, 123.37 (d, J=110.3 Hz), 114.15 (d, J=13.4 Hz), 55.34, 43.91 (d, J=58.0 Hz); 31P NMR (162 MHz, CDCl3) δ: 27.07; HRMS (ESI) calcd for C22H21NaO4P [M+Na]+: 403.1070, found 403.1069.

    2-(Bis(4-fluorophenyl)phosphoryl)-1-phenylethan-1-one (3x): White solid. 1H NMR (400 MHz, CDCl3) δ: 7.96~7.94 (m, 2H), 7.83~7.77 (m, 4H), 7.56~7.52 (m, 1H), 7.43~7.39 (m, 2H), 7.17~7.12 (m, 2.2 Hz, 4H), 4.14 (d, J=15.6 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ: 192.70 (d, J=5.6 Hz), 165.19 (dd, J=254.3, 3.2 Hz), 136.77, 133.86, 133.71 (dd, J=11.4, 8.9 Hz), 129.17, 128.64, 127.69 (dd, J=106.9, 3.3 Hz), 116.14 (dd, J=21.5, 13.6 Hz), 43.26 (d, J=59.7 Hz); 31P NMR (162 MHz, CDCl3) δ: 25.89; HRMS (ESI) calcd for C20H15F2NaO2P [M+Na]+: 379.0670, found 379.0673.

    Diethyl (2-oxo-2-phenylethyl)phosphonate (3y): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 8.06 (d, J=7.4 Hz, 2H), 7.64 (t, J=7.4 Hz, 1H), 7.52 (t, J=7.7 Hz, 2H), 4.22~4.14 (m, 4H), 3.68 (d, J=22.7 Hz, 2H), 1.32 (t, J=7.1 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ: 191.98 (d, J=6.7 Hz), 136.49 (d, J=2.1 Hz), 133.69, 129.04, 128.61, 62.68 (d, J=6.5 Hz), 38.44 (d, J=130.1 Hz), 16.24 (d, J=6.4 Hz); 31P NMR (162 MHz, CDCl3) δ: 19.97.

    Supporting Information  Optimization tables; Typical experimental procedures; 1H NMR, 13C NMR and 31P NMR spectra for products 3a~3y. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.

    1. [1]

      (a) Wadsworth, W. S. ; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
      (b) Boutagy, J. ; Thomas, R. Chem. Rev. 1974, 74, 87.
      (c) Maryanoff, B. E. ; Reitz, A. B. Chem. Rev. 1989, 89, 863.
      (d) Boesen, T. ; Fox, D. J. ; Galloway, W. ; Pedersen, D. S. ; Tyzack, C. R. ; Warren, S. Org. Biomol. Chem. 2005, 3, 630.

    2. [2]

      (a) Lestas, C. N. ; Truter, M. R. J. Chem. Soc. A 1971, 738.
      (b) Babecki, R. ; Platt, A. W. G. ; Fawcett, J. J. Chem. Soc., Dalton Trans. 1992, 675.
      (c) McManus, H. A. ; Guiry, P. J. Chem. Rev. 2004, 104, 4151.

    3. [3]

      (a) McCabe, D. J. ; Duesler, E. N. ; Paine, R. T. Inorg. Chem. 1985, 24, 4626.
      (b) Braunstein, P. ; Cea, S. C. ; Decian, A. ; Fischer, J. Inorg. Chem. 1992, 31, 4203.
      (c) Gorin, D. J. ; Sherry, B. D. ; Toste, F. D. Chem. Rev. 2008, 108, 3351.
      (d) Birkholz, M. N. ; Freixa, Z. ; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099.
      (e) Mitchell, L. A. ; Holliday, B. J. ACS Macro Lett. 2016, 5, 1100.

    4. [4]

      (a) Wei, W. ; Ji, J. X. Angew. Chem., Int. Ed. 2011, 50, 9097.
      (b) Zhang, G. Y. ; Li, C. K. ; Li, D. P. ; Zeng, R. S. ; Shoberu, A. ; Zou, J. P. Tetrahedron 2016, 72, 2972.
      (c) Gu, J. ; Cai, C. Org. Biomol. Chem. 2017, 15, 4226.

    5. [5]

      (a) Chen, X. ; Li, X. ; Chen, X. L. ; Qu, L. B. ; Chen, J. Y. ; Sun, K. ; Liu, Z. D. ; Bi, W. Z. ; Xia, Y. Y. ; Wu, H. T. ; Zhao, Y. F. Chem. Commun. 2015, 51, 3846.
      (b) Gutierrez, V. ; Mascaró, E. ; Alonso, F. ; Moglie, Y. ; Radivoy, G. RSC Adv. 2015, 5, 65739.
      (c) Yi, N. ; Wang, R. ; Zou, H. ; He, W. ; Fu, W. ; He, W. J. Org. Chem. 2015, 80, 5023.
      (d) Zhou, M. ; Chen, M. ; Zhou, Y. ; Yang, K. ; Su, J. ; Du, J. ; Song, Q. Org. Lett. 2015, 17, 1786.
      (e) Zhong, W. W. ; Zhang, Q. ; Li, M. S. Synth. Commun. 2016, 46, 1377.
      (f) Bu, M. J. ; Lu, G. P. ; Cai, C. Catal. Sci. Technol. 2016, 6, 413.
      (g) Peng, P. ; Lu, Q. ; Peng, L. ; Liu, C. ; Wang, G. ; Lei, A. Chem. Commun. 2016, 52, 12338.

    6. [6]

      (a) Zeng, Y. F. ; Tan, D. H. ; Lv, W. X. ; Li, Q. J. ; Wang, H. G. Eur. J. Org. Chem. 2015, 2015, 4335.
      (b) Zhang, P. ; Zhang, L. ; Gao, Y. ; Xu, J. ; Fang, H. ; Tang, G. ; Zhao, Y. Chem. Commun. 2015, 51, 7839.
      (c) Zhou, M. ; Chen, M. ; Zhou, Y. ; Yang, K. ; Su, J. ; Du, J. ; Song, Q. Org. Lett. 2015, 17, 1786.
      (d) Chen, X. ; Li, X. ; Qu, C. ; Qu, L. ; Bi, W. ; Sun, K. ; Zhao, Y. Tetrahedron 2017, 73, 2439.

    7. [7]

      Zhou, Y.; Zhou, M.; Chen, M.; Su, J.; Du, J.; Song, Q. RSC Adv. 2015, 5, 103977. doi: 10.1039/C5RA23950H

    8. [8]

      (a) Zhou, Y. ; Rao, C. ; Mai, S. ; Song, Q. J. Org. Chem. 2016, 81, 2027.
      (b) Li, L. ; Huang, W. ; Chen, L. ; Dong, J. ; Ma, X. ; Peng, Y. Angew. Chem., Int. Ed. 2017, 56, 10539.
      (c) Zhou, P. ; Hu, B. ; Li, L. ; Rao, K. ; Yang, J. ; Yu, F. J. Org. Chem. 2017, 82, 13268.

    9. [9]

      Tang, P.; Zhang, C.; Chen, E.; Chen, B.; Chen, W.; Yu, Y. Tetrahedron Lett. 2017, 58, 2157. doi: 10.1016/j.tetlet.2017.04.069

    10. [10]

      (a) Ke, J. ; Tang, Y. ; Yi, H. ; Li, Y. ; Cheng, Y. ; Liu, C. ; Lei, A. Angew. Chem., Int. Ed. 2015, 54, 6604.
      (b) Fu, Q. ; Yi, D. ; Zhang, Z. J. ; Liang, W. ; Chen, S. Y. ; Yang, L. ; Zhang, Q. ; Ji, J. X. ; Wei, W. Org. Chem. Front. 2017, 4, 1385.
      (c) Liang, W. ; Zhang, Q. ; Yi, D. ; Fu, Q. ; Chen, S. Y. ; Yang, L. ; Du, F. T. ; Ji, J. X. ; Wei, W. Chin. J. Chem. 2017, 35, 1378.
      (d) Zhang, Z. J. ; Yi, D. ; Fu, Q. ; Liang, W. ; Chen, S. Y. ; Yang, L. ; Du, F. T. ; Ji, J. X. ; Wei, W. Tetrahedron Lett. 2017, 58, 2417.

    11. [11]

      (a) Zong, Z. ; Lu, S. ; Wang, W. ; Li, Z. Tetrahedron Lett. 2015, 56, 6719.
      (b) Zhang, P. ; Zhang, L. ; Gao, Y. ; Xu, J. ; Fang, H. ; Tang, G. ; Zhao, Y. Chem. Commun. 2015, 51, 7839.
      (c) Lee, M. ; Chen, Y. H. ; Hung, T. H. ; Chang, W. ; Yan, W. C. ; Leow, D. RSC Adv. 2015, 5, 86402.
      (d) Nawrat, C. C. ; Jamison, C. R. ; Slutskyy, Y. ; MacMillan, D. W. C. ; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270.
      (e) Xi, H. ; Deng, B. ; Zong, Z. ; Lu, S. ; Li, Z. Org. Lett. 2015, 17, 1180.
      (f) Yuan, Z. ; Wang, H. Y. ; Mu, X. ; Chen, P. ; Guo, Y. L. ; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
      (g) Zong, Z. ; Bai, X. ; Lu, S. ; Li, Z. Tetrahedron Lett. 2016, 57, 3827.
      (h) Caputo, J. A. ; Frenette, L. C. ; Zhao, N. ; Sowers, K. L. ; Krauss, T. D. ; Weix, D. J. J. Am. Chem. Soc. 2017, 139, 4250.
      (i) Gualandi, A. ; Matteucci, E. ; Monti, F. ; Baschieri, A. ; Ar-maroli, N. ; Sambri, L. ; Cozzi, P. G. Chem. Sci. 2017, 8, 1613.
      (j) Gualandi, A. ; Mazzarella, D. ; Ortega-Martínez, A. ; Mengozzi, L. ; Calcinelli, F. ; Matteucci, E. ; Monti, F. ; Armaroli, N. ; Sambri, L. ; Cozzi, P. G. ACS. Catal. 2017, 7, 5357.
      (k) Yi, D. ; Fu, Q. ; Chen, S. Y. ; Gao, M. ; Yang, L. ; Zhang, Z. J. ; Liang, W. ; Zhang, Q. ; Ji, J. X. ; Wei, W. Tetrahedron Lett. 2017, 58, 2058.

    12. [12]

      (a) Jiang, L. J. ; Zhang, Z. G. Chin. J. Org. Chem. 2006, 26, 618(in Chinese).
      (姜丽娟, 张兆国, 有机化学, 2006, 26, 618. )
      (b) Mahatthananchai, J. ; Dumas, A. M. ; Bode, J. W. Angew. Chem., Int. Ed. 2012, 51, 10954.
      (c) Jia, X. F. ; Wang, Z. ; Xia, C. G. ; Ding, K. L. Chin. J. Org. Chem. 2013, 33, 1369(in Chinese).
      (贾肖飞, 王正, 夏春谷, 丁奎岭, 有机化学, 2013, 33, 1369. )
      (d) Yang, Y. ; Wang, L. Y. ; Luo, J. ; Zhu, Y. L. Chin. J. Org. Chem. 2013, 33, 1382(in Chinese).
      (杨艳, 王立颖, 罗君, 朱育林, 有机化学, 2013, 33, 1382. )
      (e) Chen, P. H. ; Xu, T. ; Dong, G. Angew. Chem., Int. Ed. 2014, 53, 1674.
      (f) Indu, S. ; Subramanian, P. ; Kaliappan, K. P. Eur. J. Org. Chem. 2014, 2014, 7193.
      (g) Zhu, H. ; Yan, B. Y. ; Cao, Y. ; Chen, Z. Y. Chin. J. Org. Chem. 2015, 35, 509(in Chinese).
      (朱辉, 严冰玉, 曹杨, 陈知远, 有机化学, 2015, 35, 509. )
      (h) Otani, T. ; Jiang, X. ; Cho, K. ; Araki, R. ; Kutsumura, N. ; Saito, T. Adv. Synth. Catal. 2015, 357, 1483.
      (i) Kholdeeva, O. A. Catal. Today 2016, 278, 22.

    13. [13]

      (a) Li, M. M. ; Zhang, Q. ; Yue, H. L. ; Ma, L. ; Ji, J. X. Tetrahedron Lett. 2012, 53, 317.
      (b) Yue, H. L. ; Ma, L. ; Ji, J. X. Synth. Commun. 2013, 43, 600.
      (c) Yan, X. W. ; Zhang, Q. ; Wei, W. ; Ji, J. X. Tetrahedron Lett. 2014, 55, 3750.
      (d) Yang, Y. R. ; Zhang, Q. ; Du, F. T. ; Ji, J. X. Tetrahedron 2015, 71, 4304.
      (e) Li, M. S. ; Zhang, Q. ; Hu, D. Y. ; Zhong, W. W. ; Cheng, M. ; Ji, J. X. ; Wei, W. Tetrahedron Lett. 2016, 57, 2642.
      (f) Hu, D. Y. ; Li, M. S. ; Zhong, W. W. ; Ji, J. X. ; Zhu, J. ; Wei, W. ; Zhang, Q. ; Cheng, M. Chin. Chem. Lett. 2016, 27, 1691.

    14. [14]

      (a) Hirano, K. ; Iwahama, T. ; Sakaguchi, S. ; Ishii, Y. Chem. Commun. 2000, 2457.
      (b) Wang, H. ; Wang, Y. ; Peng, C. ; Zhang, J. ; Zhu, Q. J. Am. Chem. Soc. 2010, 132, 13217.
      (c) Li, J. S. ; Yang, Q. ; Yang, F. ; Chen, G. Q. ; Li, Z. W. ; Kuang, Y. J. ; Zhang, W. J. ; Huang, P. M. Org. Biomol. Chem. 2017, 16, 140.
      (d) Kumar, P. ; Sharma, A. K. ; Guntreddi, T. ; Singh, R. ; Singh, K. N. Org. Lett. 2018, 20, 744.

  • Scheme 1  Phosphorylation of 2-substituted acrylates

    Scheme 2  Control experiments

    Scheme 3  Tentative reaction mechanism

    Table 1.  Optimization of reaction conditionsa

    Entry Catal. Cocatal. Additive Yieldb/%
    1 CuBr2 - Et3N 19c
    2 CuBr2 - Et3N 21d
    3 CuBr2 - - 22
    4 CuBr2 - HCl (aq., 1 mol/L) 49
    5 CuBr2 - HCOOH 29
    6 CuBr2 - CH3COOH 27
    7 CuBr2 - PhCH2COOH 24
    8 CuBr2 - Salicylic acid 22
    9 CuBr2 - PhB(OH)2 31
    10 CuBr2 - TsOH 21
    11 CuCl2 - HCl (aq., 1 mol/L) 45
    12 CuBr - HCl (aq., 1 mol/L) 42
    13 Cu(OTf)2 - HCl (aq., 1 mol/L) 34
    14 Cu(acac)2 - HCl (aq., 1 mol/L) 38
    15 CuBr2 AgCl HCl (aq., 1 mol/L) 39
    16 CuBr2 PdCl2 HCl (aq., 1 mol/L) 40
    17 CuBr2 AuCl3 HCl (aq., 1 mol/L) 42
    18 CuBr2 FeBr3 HCl (aq., 1 mol/L) 74
    19 CuBr2 FeCl3 HCl (aq., 1 mol/L) 77
    20 CuBr2 FeCl2 HCl (aq., 1 mol/L) 51
    21 - FeCl3 HCl (aq., 1 mol/L) 54
    下载: 导出CSV

    Table 2.  Screening of substrate scopea, b

    a Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), CuBr2 (5 mol%), FeCl3 (10 mol%), HCl (aq., 0.15 mmol, 1 mol/L), DMF (2.0 mL), O2 (balloon), 40 ℃, 3 h.
    b Isolated yields based on 1. c Phenethyl 2-phenylacrylate instead of ethyl 2-phenylacrylate. d The hydroxyphosphorylation product 3t' was obtained in 36% yield.
    e Reaction conditions: Et3N (0.5 mmol) instead of HCl (aq., 0.15 mmol, 1 mol/L).
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  4
  • 文章访问数:  1098
  • HTML全文浏览量:  104
文章相关
  • 发布日期:  2018-08-01
  • 收稿日期:  2018-05-11
  • 修回日期:  2018-05-30
  • 网络出版日期:  2018-08-31
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章