离子液体水溶液中2-甲基氮杂芳烃苄位C(sp3)-H官能化反应

艾锋 谢宗波 姜国芳 季久健 乐长高

引用本文: 艾锋, 谢宗波, 姜国芳, 季久健, 乐长高. 离子液体水溶液中2-甲基氮杂芳烃苄位C(sp3)-H官能化反应[J]. 有机化学, 2018, 38(8): 2174-2181. doi: 10.6023/cjoc201802012 shu
Citation:  Ai Feng, Xie Zongbo, Jiang Guofang, Ji Jiujian, Le Zhanggao. Benzylic C(sp3)-H Functionalization Reaction of 2-Methylazaarenes in Ionic Liquid Aqueous Solution[J]. Chinese Journal of Organic Chemistry, 2018, 38(8): 2174-2181. doi: 10.6023/cjoc201802012 shu

离子液体水溶液中2-甲基氮杂芳烃苄位C(sp3)-H官能化反应

    通讯作者: 谢宗波, zbxie@ecit.cn; 乐长高, zhgle@ecit.cn
  • 基金项目:

    国家自然科学基金(Nos.21462001,21262002,21465002)、江西省科技计划项目(No.20161BCB24006)和江西省教育厅科技(Nos.KJLD14050,GJJ150584)资助项目

摘要: 以中性离子液体水溶液为反应介质,无需催化剂的条件下,通过2-甲基氮杂芳烃苄位C(sp3)-H与缺电子烯烃之间的加成反应,以良好产率合成了一系列氮杂芳烃衍生物.该方法操作简单,条件温和,不仅拓展了离子液体在氮杂芳烃的C(sp3)-H官能化反应中的应用,对绿色化学的发展也有积极的推动作用.

English

  • 在过去的数十年里, 过渡金属[1]催化的氮杂芳烃苄位C(sp3)—H官能化已经成为有机合成化学中构建C—C键最为常见的方法之一[2].喹啉、吡啶等氮杂芳烃作为各种具有生物活性的化合物的重要结构单元, 在药物化学[3]、有机催化[4]以及材料合成[5]等方面多有应用, 因此氮杂芳烃苄位C(sp3)—H官能化得到了有机合成工作者的广泛关注.此外, Lewis酸[6]和Bronsted酸[7]催化的氮杂芳烃苄位C(sp3)—H官能化亦多有报道.但这些催化剂通常存在着底物普适性差、处理步骤繁杂以及环境不够友好等不足, 此外也常需使用毒性较大的有机溶剂作为反应介质.因此, 寻找绿色高效的合成方法非常迫切.

    离子液体(IL)因其独特的物理化学性质, 例如低挥发性[8], 极高的热稳定性[9], 不易燃[10], 以及极好的溶解性和结构可调节性等[11]的性质和优点, 已作为反应介质或催化剂被广泛应用于有机合成领域, 例如交叉偶联反应[12]、Michael加成[13]、Diels-Alder反应[14]、Aldol缩合[15]、Knoevenagel缩合[16]、环化反应[17]、烷基化及酰基化反应[18]和氧化还原反应[19]等.本研究以离子液体水溶液为反应介质, 通过2-甲基氮杂芳烃对缺电子烯烃的加成反应, 绿色高效地合成了一系列氮杂芳烃衍生物.

    在探索N-苯基马来酰亚胺与2-甲基喹啉之间的反应过程中发现, 该反应可以在纯水介质和无催化剂条件下进行; 但由于两种底物均不溶于水使得整个反应体系处于不均相状态, 而且在提升反应温度和延长反应时间后产率没有得到明显提升.尝试向水介质中分别加入环糊精、聚乙二醇、吐温、曲拉通、离子液体等添加物, 来增大底物的溶解性, 从而促进反应的进行.实验结果显示只有离子液体对反应有明显的促进作用, 又考察了不同离子液体的促进效果.由表 1可知, 加入离子液体后反应产率均有不同程度提升, 其中1-辛基-3-甲基咪唑四氟硼酸盐(1-Octyl-3-methylimidazolium tetrafluoroborate, [OMIM][BF4])的效果最好, 取得了64%的产率(表 1, Entry 4).研究发现, 含[BF4]阴离子的离子液体比含[PF6]阴离子的离子液体促进效果更明显; 同时,阳离子的烃基链越长促进效果也越好, 这可能是因为含有较长烃基链的离子液体具有较高的极性, 可以更好地溶解反应基质[20].另外, 两种含有卤素阴离子的离子液体也有较好的促进效果(表 1, Entries 9, 10).最终选择了[OMIM][BF4]作为最佳离子液体进行后续的研究.

    表 1

    表 1  添加离子液体对反应产率的影响a
    Table 1.  Effect of different ionic liquid on the yield
    下载: 导出CSV
    Entry Ionic liquid Yieldb/%
    1 1-乙基-3-甲基咪唑四氟硼酸盐 53
    2 1-丁基-3-甲基咪唑四氟硼酸盐 55
    3 1-己基-3-甲基咪唑四氟硼酸盐 58
    4 1-辛基-3-甲基咪唑四氟硼酸盐 64
    5 1-乙基-3-甲基咪唑六氟磷酸盐 50
    6 1-丁基-3-甲基咪唑六氟磷酸盐 53
    7 1-已基-3-甲基咪唑六氟磷酸盐 52
    8 1-辛基-3-甲基咪唑六氟磷酸盐 59
    9 1-丁基-3-甲基咪唑氯盐 57
    10 1-丁基-3-甲基咪唑溴盐 60
    11 去离子水 48
    a Reaction conditions: N-phenylmaleimide (0.75 mmol), 2-methyl quinoline (0.5 mmol), 1 mL of 50% IL aqueous solution at 60 ℃ for 12 h. b Isolated yield after column chromatography.

    继续选择上述反应为模板反应, 又探究了离子液体添加量对模板反应的影响, 结果如表 2所示.离子液体水溶液的浓度对反应产率有较大影响, 随着离子液体浓度的增大, 产率呈现先增后减的趋势, 离子液体浓度为20%时(表 2, Entry 2), 可获得最高70%的产率, 所以选择了浓度为20%的离子液体水溶液为最佳反应介质.

    表 2

    表 2  离子液体浓度对反应产率的影响a
    Table 2.  Effect of ionic liquid concentration on the yield
    下载: 导出CSV
    Entry IL concentration/% Yieldb/%
    1 10 60
    2 20 70
    3 30 67
    4 40 65
    5 60 47
    6 80 32
    7 100 16
    a Reaction conditions: N-phenylmaleimide (0.75 mmol), 2-methyl quinoline (0.5 mmol), 1 mL of IL aqueous solution at 60 ℃ for 12 h. b Isolated yield after column chromatography.

    接下来, 考察了反应温度的变化对反应产率的影响, 如表 3所示.当温度超过70 ℃时, 反应产率随温度的升高反而减小, 薄层色谱(TLC)跟踪显示副产物也逐渐增多, 这说明过高的温度不利于目标产物的合成(表 3, Entries 3~5), 因此选择了70 ℃为最佳反应温度进行后续的研究(表 3, Entry 2).

    表 3

    表 3  温度对反应产率的影响a
    Table 3.  Effect of temperature on the yield
    下载: 导出CSV
    Entry Temperature/℃ Yieldb/%
    1 60 70
    2 70 74
    3 80 63
    4 90 59
    5 100 55
    a Reaction conditions: N-phenylmaleimide (0.75 mmol), 2-methyl quinoline (0.5 mmol), 1 mL of 20% IL aqueous solution for 12 h. b Isolated yield after column chromatography.

    为了进一步优化实验条件, 又考察了底物摩尔比对反应产率的影响, 如表 4所示.发现底物摩尔比对反应产率也有明显的影响, 当2-甲基喹啉过量时, 产率逐渐增加并达到最大值, 最终选择1:3为最佳的底物物质的量比(表 4, Entry 5).

    表 4

    表 4  底物摩尔比对反应产率的影响a
    Table 4.  Effect of molar ratio of substrate on the yield
    下载: 导出CSV
    Entry Ia/mmol IIa/mmol Yieldb/%
    1 0.75 0.5 60
    2 0.5 0.5 55
    3 0.5 0.75 74
    4 0.5 1 79
    5 0.5 1.5 84
    6 0.5 2 85
    a Reaction conditions: specified amounts of N-phenylmaleimide and 2-methyl quinoline, 1 mL of 20% IL aqueous solution at 70 ℃ for 12 h. b Isolated yield after column chromatography.

    由于离子液体水溶液有一定的粘度, 难以通过TCL监测反应进度, 因此又考察了不同时间时的反应效果.由表 5可知, 反应6 h产率已接近最大值(表 5, Entry 2), 之后产率升高缓慢(表 5, Entries 3~5), 当反应时间超过18 h后, 产率开始有所下降(表 5, Entries 6, 7).考虑到能耗问题, 最终选择了6 h为最佳反应时间.基于对反应成本的考虑, 又考察了离子液体的循环利用情况, 向萃取了产物后的离子液体中加入适量的水和反应物进行反应, 由表 6可知, 循环利用2次反应产率略有降低, 但回收的离子液体对反应仍有明显的促进效果.

    表 5

    表 5  反应时间对反应产率的影响a
    Table 5.  Effect of reaction time on the yield
    下载: 导出CSV
    Entry Time/h Yieldb/%
    1 3 49
    2 6 81
    3 12 85
    4 15 86
    5 18 88
    6 21 87
    7 24 86
    a Reaction conditions: N-phenylmaleimide (0.5 mmol), 2-methyl quinoline (1.5 mmol), 1 mL of 20% IL aqueous solution at 70 ℃. b Isolated yield after column chromatography.

    表 6

    表 6  离子液体的循环使用a
    Table 6.  Recycle of IL
    下载: 导出CSV
    Entry Cycle number Yieldb/%
    1 1 77
    2 2 74
    a Reaction conditions: N-phenylmaleimide (0.5 mmol), 2-methyl quinoline (1.5 mmol), 1 mL of 20% IL aqueous solution at 70 ℃ for 6 h. b Isolated yield after column chromatography.

    最优条件确定后, 选用了一系列底物分别与N-苯基马来酰亚胺和2-甲基喹啉反应, 以考察该实验方法的底物适用性.由表 7可知, [OMIM][BF4]水溶液对氮杂芳烃的官能化反应有较好的促进作用.以2-甲基喹啉为骨架的氮杂芳烃与N-苯基马来酰亚胺反应时, 均能得到较好的产率(表 7, Entries 1, 3~12), 但2-甲基吡啶和2, 6-二甲基吡啶为底物时分别只得到了18%和23%的产率(表 7, Entries 8, 9), 这可能是因为吡啶为单环共轭体系, 相对于喹啉, α位电子云密度更低.而除了N-苯基马来酰亚胺外, N-甲基马来酰亚胺、N-苄基马来酰亚胺、β-硝基苯乙烯和苄烯丙二腈也都是相似的缺电子烯烃, 与2-甲基喹啉反应, 亦获得了较好的产率.推测的反应机理如Scheme 1所示.

    表 7

    表 7  2-甲基氮杂芳烃苄位C(sp3)—H官能化反应a
    Table 7.  Benzylic C(sp3)—H functionalization reaction of 2-methylazaarenes
    下载: 导出CSV
    Entry 2-Methylazaarene (I) Olefin () Product Yieldb/%
    1 81
    2 77
    3 75
    4 75
    5 79
    6 82
    7 68
    8 18
    9 23
    10 65
    11 69
    12 76
    13 70
    14 78
    15 82
    16 64
    17 76
    18 48
    19 72
    a Reaction conditions: 2-methylazaarene (0.5 mmol), electron-deficient olefin (1.5 mmol), 1 mL of 20% IL aqueous solution at 70 ℃ for 6 h. b Isolated yield after column chromatography.

    在中性离子液体水溶液中和无催化剂条件下, 2-甲基氮杂芳烃可以与一系列缺电子烯烃进行亲核加成反应合成氮杂芳烃衍生物, 从而建立了一种2-甲基氮杂芳烃苄位C(sp3)—H官能化反应的绿色新方法.

    图式1

    图式1.  推测的反应机理
    Scheme 1.  Proposed mechanism for the model reaction

    Bruker Avance-600型核磁共振仪, WRS-1B数字熔点仪, DF-101S集热式恒温加热磁力搅拌器.所用试剂均为市售分析纯, 且使用前未经任何处理.

    向10 mL具塞试管中先后加入0.5 mmol N-苯基马来酰亚胺、1.5 mmol 2-甲基喹啉、0.8 mL去离子水和0.2 mL离子液体1-辛基-3-甲基咪唑四氟硼酸盐, 在70 ℃油浴中反应6 h.反应完成后, 用乙酸乙酯萃取产物, 有机相经减压浓缩后, 得到粗产物, 再经柱色谱分离[V(石油醚):V(乙酸乙酯)=5:1], 得到纯的产品.

    苯基-3-(喹啉-2-亚甲基)吡咯烷-2, 5-二酮(Ⅲa):白色固体, 产率81%. m.p. 124~125 ℃ (lit.[21] 123~125 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.08 (d, J=8.4 Hz, 1H), 7.87 (d, J=8.4 Hz, 1H), 7.77 (d, J=7.7 Hz, 1H), 7.63 (t, J=7.0 Hz, 1H), 7.51~7.45 (m, 3H), 7.40~7.27 (m, 4H), 3.72 (dd, J=17.2, 6.8 Hz, 1H), 3.55~3.49 (m, 2H), 3.06 (dd, J=18.2, 9.3 Hz, 1H), 2.97 (dd, J=18.3, 5.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 179.28, 176.53, 157.61, 147.39, 136.50, 132.68, 129.69, 129.14, 128.87, 128.37, 127.61, 126.82, 126.60, 126.18, 121.63, 38.28, 37.13, 34.07.

    (异喹啉-1-亚甲基)-1-苯基吡咯烷-2, 5-二酮(Ⅲb):白色固体, 产率77%. m.p. 142~143 ℃ (lit.[21] 142~143 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.30 (d, J=5.7 Hz, 1H), 8.03 (d, J=8.4 Hz, 1H), 7.74 (d, J=8.1 Hz, 1H), 7.60 (t, J=7.3 Hz, 1H), 7.53 (t, J=7.5 Hz, 1H), 7.45 (t, J=7.6 Hz, 3H), 7.39~7.32 (m, 3H), 3.91~3.80 (m, 2H), 3.51 (td, J=9.8, 5.1 Hz, 1H), 3.00 (dd, J=18.2, 9.5 Hz, 1H), 2.79 (dd, J=18.2, 5.2 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 178.55, 175.48, 155.26, 140.06, 134.90, 131.76, 129.02, 128.01, 127.26, 126.39, 126.06, 125.60, 123.19, 118.78, 36.61, 33.39, 32.68.

    [(6-甲基喹啉-2-亚基)甲基]-1-苯基吡咯烷-2, 5-二酮(IIIc):白色固体, 产率75%. m.p. 104~106 ℃ (lit.[21] 104~106 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.93 (d, J=8.4 Hz, 1H), 7.74 (d, J=8.5 Hz, 1H), 7.49 (s, 1H), 7.44 (dd, J=13.4, 6.3 Hz, 3H), 7.35 (dd, J=13.0, 7.6 Hz, 3H), 7.19 (d, J=8.4 Hz, 1H), 3.65 (dd, J=17.3, 6.9 Hz, 1H), 3.46 (d, J=13.4 Hz, 2H), 3.00 (dd, J=18.2, 9.0 Hz, 1H), 2.92 (dd, J=18.2, 4.8 Hz, 1H), 2.47 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 178.13, 175.36, 155.32, 144.95, 134.99, 134.85, 131.53, 130.79, 128.01, 127.62, 127.25, 125.76, 125.47, 125.34, 120.46, 37.33, 36.07, 32.98, 20.43.

    [(8-硝基喹啉-2-亚基)甲基]-1-苯基吡咯烷-2, 5-二酮(IIId):白色固体, 产率75%. m.p. 148~150 ℃ (lit.[21] 149~151 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.15 (d, J=8.5 Hz, 1H), 7.96 (d, J=7.6 Hz, 2H), 7.53 (t, J=7.8 Hz, 1H), 7.44 (dd, J=15.3, 7.9 Hz, 3H), 7.34 (dd, J=12.6, 7.8 Hz, 3H), 3.73~3.64 (m, 2H), 3.49 (dd, J=17.5, 9.2 Hz, 1H), 3.21 (dd, J=18.3, 9.0 Hz, 1H), 3.01 (dd, J=18.4, 5.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 178.75, 175.77, 160.68, 147.77, 138.72, 136.48, 132.27, 131.73, 129.03, 128.40, 127.62, 126.55, 125.01, 123.91, 123.53, 38.49, 37.60, 34.75.

    3-[(4-氯喹啉-2-亚基)甲基]-1-苯基吡咯烷-2, 5-二酮(IIIe):白色固体, 产率79%. m.p. 149~150 ℃ (lit.[21] 149~151 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.14 (d, J=8.3 Hz, 1H), 7.85 (d, J=8.4 Hz, 1H), 7.66 (t, J=7.6 Hz, 1H), 7.58~7.54 (m, 1H), 7.46 (t, J=7.7 Hz, 2H), 7.36 (dd, J=15.0, 9.4 Hz, 4H), 3.66 (dd, J=17.6, 6.7 Hz, 1H), 3.45 (d, J=13.7 Hz, 2H), 2.97 (ddd, J=23.1, 18.0, 6.9 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ: 179.00, 176.34, 157.45, 148.19, 142.89, 132.50, 130.68, 129.26, 129.17, 128.45, 127.32, 126.50, 125.07, 123.99, 121.55, 38.08, 36.90, 34.17.

    [(7-氯喹啉-2-基)甲基]-1-苯基吡咯烷-2, 5-二酮(IIIf):白色固体, 产率82%. m.p. 128~130 ℃ (lit.[21] 128~130 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.96 (d, J=8.4 Hz, 1H), 7.82 (s, 1H), 7.62 (d, J=8.7 Hz, 1H), 7.48~7.44 (m, 2H), 7.38~7.34 (m, 4H), 3.63 (dd, J=17.7, 7.2 Hz, 1H), 3.50~3.41 (m, 2H), 3.01 (dd, J=18.3, 9.2 Hz, 1H), 2.86 (dd, J=18.3, 5.0 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 179.09, 176.36, 158.78, 147.69, 136.41, 135.42, 132.55, 129.17, 128.91, 128.46, 127.92, 127.25, 126.49, 125.19, 121.90, 38.34, 37.22, 34.10.

    (2-甲基苯并咪唑)-1-苯基吡咯烷-2, 5-二酮(IIIg):白色固体, 产率68%. m.p. 107~109 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 7.61 (d, J=7.0 Hz, 1H), 7.56 (t, J=7.6 Hz, 2H), 7.48 (t, J=7.3 Hz, 1H), 7.44 (d, J=7.6 Hz, 2H), 7.36 (d, J=6.5 Hz, 1H), 7.25~7.20 (m, 2H), 6.13~6.07 (m, 1H), 3.56 (dd, J=18.0, 9.6 Hz, 1H), 3.33 (dd, J=18.0, 6.6 Hz, 1H), 2.61 (s, 3H); 13C NMR (150 MHz, DMSO-d6) δ: 173.54, 173.25, 142.84, 132.45, 129.63, 129.32, 127.51, 122.85, 122.44, 119.31, 110.38, 60.23, 53.47, 34.85, 14.56, 14.36; HRMS calcd for C18H16N3O2 [M+H+] 306.1243, found 306.1301.

    3-(2-甲基吡啶)-1-苯基吡咯烷-2, 5-二酮(IIIh):白色固体, 产率18%. m.p. 84~86 ℃ (lit.[21] 84~86 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.50 (d, J=4.6 Hz, 1H), 7.65 (t, J=7.6 Hz, 1H), 7.47 (t, J=7.6 Hz, 2H), 7.39 (t, J=7.4 Hz, 1H), 7.28 (d, J=7.7 Hz, 2H), 7.22 (d, J=7.8 Hz, 1H), 7.19~7.15 (m, 1H), 3.49~3.43 (m, 2H), 3.37 (d, J=10.7 Hz, 1H), 2.77 (dd, J=18.3, 4.4 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ: 179.07, 175.98, 157.02, 149.08, 136.75, 132.39, 129.08, 128.45, 126.56, 123.80, 121.93, 42.65, 38.88, 37.22, 33.74.

    3-[(6-甲基吡啶-2-亚基)甲基]-1-苯基吡咯烷-2, 5-二酮(IIIi):白色固体, 产率23%. m.p. 87~89 ℃ (lit.[21] 88~89 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.49 (dt, J=30.5, 7.8 Hz, 3H), 7.40~7.36 (m, 1H), 7.30 (d, J=9.6 Hz, 2H), 7.01 (d, J=7.6 Hz, 2H), 3.47~3.41 (m, 2H), 3.32 (dd, J=17.5, 6.7 Hz, 1H), 2.99~2.93 (m, 2H), 2.44 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 178.81, 176.02, 157.83, 156.22, 136.81, 132.34, 128.91, 128.29, 126.36, 121.23, 120.45, 42.60, 40.91, 38.82, 36.84, 33.76, 24.41.

    1-[2-(3-甲基-N-苯丁二酰亚胺)-4-甲基-3-喹啉]乙酮(IIIj):白色固体, 产率65%. m.p. 85~88 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.95 (d, J=8.3 Hz, 1H), 7.79 (d, J=8.3 Hz, 1H), 7.62 (t, J=8.2 Hz, 1H), 7.52 (t, J=7.6 Hz, 1H), 7.47~7.42 (m, 2H), 7.39~7.34 (m, 3H), 3.57 (dd, J=17.2, 5.5 Hz, 1H), 3.47 (td, J=9.4, 5.2 Hz, 1H), 3.37 (dd, J=17.2, 3.9 Hz, 1H), 3.05 (dd, J=18.1, 9.5 Hz, 1H), 2.94 (dd, J=18.1, 5.3 Hz, 1H), 2.60 (s, 3H), 2.56 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 206.29, 179.14, 176.52, 151.35, 146.33, 139.14, 135.37, 132.61, 130.03, 129.63, 129.01, 128.27, 126.98, 126.42, 126.11, 123.61, 37.67, 34.52, 34.31, 32.89, 15.39; HRMS calcd for C23H21N2O3 [M+H+] 373.1552, found 373.1609.

    1-[2-(3-甲基-N-苯丁二酰亚胺)-4-甲基-3-喹啉]甲酸甲酯(IIIk):白色固体, 产率69%. m.p. 107~109 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.00 (d, J=8.4 Hz, 1H), 7.82 (d, J=8.4 Hz, 1H), 7.65 (t, J=7.6 Hz, 1H), 7.55 (t, J=7.6 Hz, 1H), 7.49~7.46 (m, 2H), 7.40~7.37 (m, 3H), 4.02 (s, 3H), 3.69 (dd, J=17.8, 6.5 Hz, 1H), 3.53 (dd, J=17.9, 3.1 Hz, 2H), 3.08 (dd, J=18.2, 9.5 Hz, 1H), 2.95 (dd, J=18.2, 5.0 Hz, 1H), 2.66 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 179.20, 176.57, 169.08, 152.86, 146.54, 142.52, 132.60, 130.36, 129.63, 129.06, 128.26, 127.26, 126.88, 126.46, 125.91, 124.05, 52.56, 37.68, 35.11, 34.24, 16.00; HRMS calcd for C23H21N2O4 [M+H+] 389.1501, found 389.1556.

    1-[2-(3-甲基-N-苯丁二酰亚胺)-4-甲基-3-喹啉]甲酸乙酯(IIIl):白色固体, 产率76%. m.p. 93~95 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.00 (d, J=8.3 Hz, 1H), 7.82 (d, J=8.3 Hz, 1H), 7.65 (t, J=8.1 Hz, 1H), 7.55 (t, J=7.6 Hz, 1H), 7.49~7.46 (m, 2H), 7.39 (d, J=7.0 Hz, 3H), 4.50 (q, J=7.2 Hz, 2H), 3.70 (dd, J=17.1, 6.0 Hz, 1H), 3.57~3.49 (m, 2H), 3.07 (dd, J=18.2, 9.4 Hz, 1H), 2.96 (dd, J=18.2, 5.2 Hz, 1H), 2.67 (s, 3H), 1.46 (t, J=7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 179.11, 176.54, 168.62, 152.83, 132.63, 130.30, 129.63, 129.08, 128.28, 127.57, 126.87, 126.49, 125.99, 124.04, 61.86, 37.80, 34.96, 34.20, 29.70, 15.80, 14.23; HRMS calcd for C24H23N2O4 [M+H+] 403.1658, found 403.1718.

    1-[2-(3-甲基-N-苯丁二酰亚胺)-4-苯基-3-喹啉]乙酮(IIIm):白色固体, 产率70%. m.p. 114~116 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.87 (d, J=8.4 Hz, 1H), 7.65 (t, J=7.6 Hz, 1H), 7.58 (d, J=8.2 Hz, 1H), 7.49~7.47 (m, 4H), 7.44~7.35 (m, 5H), 4.05 (q, J=7.1 Hz, 2H), 3.81 (dd, J=17.6, 5.9 Hz, 1H), 3.66 (dd, J=17.6, 3.9 Hz, 1H), 3.56 (td, J=9.5, 5.4 Hz, 1H), 3.13 (dd, J=18.2, 9.5 Hz, 1H), 3.04 (dd, J=18.2, 5.3 Hz, 1H), 0.92 (t, J=7.1 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 179.19, 176.61, 167.90, 153.11, 135.61, 132.66, 130.51, 129.41, 129.20, 129.08, 128.55, 128.29, 128.27, 128.25, 126.96, 126.96, 126.56, 126.50, 125.38, 61.56, 37.77, 34.89, 34.27, 13.48; HRMS calcd for C28H23N2O3 [M+H+] 435.1709, found 435.1785.

    1-[2-(3-甲基-N-苯丁二酰亚胺)-4-苯基-3-喹啉]甲酸甲酯(IIIn):白色固体, 产率78%. m.p. 121~122 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.87 (d, J=8.3 Hz, 1H), 7.66 (t, J=7.6 Hz, 1H), 7.59 (d, J=8.4 Hz, 1H), 7.51~7.47 (m, 5H), 7.45~7.38 (m, 4H), 7.35 (dd, J=10.1, 1.9 Hz, 2H), 3.79 (dd, J=17.6, 5.9 Hz, 1H), 3.63 (dd, J=17.6, 3.9 Hz, 1H), 3.57 (s, 3H), 3.56~3.53 (m, 1H), 3.13 (dd, J=18.2, 9.5 Hz, 1H), 3.03 (dd, J=18.2, 5.3 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 179.29, 176.59, 168.43, 153.03, 147.15, 135.51, 132.62, 130.57, 129.24, 129.18, 129.08, 128.63, 128.32, 128.28, 126.97, 126.82, 126.60, 126.49, 125.30, 52.26, 37.68, 34.91, 34.27, 29.68; HRMS calcd for C28H23N2O4 [M+H+] 451.1658, found 451.1707.

    1-[2-(3-甲基-N-苯丁二酰亚胺)-4-苯基-3-喹啉]甲酸乙酯(IIIo):白色固体, 产率82%. m.p. 106~108 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.87 (d, J=8.1 Hz, 1H), 7.65 (t, J=8.7 Hz, 2H), 7.54~7.46 (m, 5H), 7.42~7.37 (m, 4H), 7.33 (dd, J=5.6, 2.9 Hz, 1H), 3.66 (dd, J=18.1, 5.9 Hz, 1H), 3.58~3.50 (m, 2H), 3.11 (qd, J=18.2, 7.3 Hz, 2H), 2.04 (s, 1H), 1.98 (s, 3H), 1.25 (dd, J=9.2, 5.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ: 205.36, 179.33, 176.63, 152.20, 135.02, 134.37, 132.64, 130.40, 130.10, 129.92, 129.13, 129.08, 128.97, 128.71, 128.29, 127.08, 126.50, 126.20, 125.16, 37.76, 34.75, 34.39, 31.97, 31.88, 29.62; HRMS calcd for C29H25N2O4 [M+H+] 465.1814, found 465.1870.

    1-甲基-3-(喹啉-2-亚甲基)吡咯烷-2, 5-二酮(IIIp):白色固体, 产率64%. m.p. 104~106 ℃ (lit.[21] 105~106 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.01 (d, J=8.4 Hz, 1H), 7.84 (d, J=8.4 Hz, 1H), 7.72 (d, J=8.1 Hz, 1H), 7.63 (t, J=7.6 Hz, 1H), 7.45 (t, J=7.4 Hz, 1H), 7.21 (d, J=8.4 Hz, 1H), 3.46 (d, J=5.6 Hz, 2H), 3.36 (dq, J=10.5, 5.3 Hz, 1H), 3.04 (s, 3H), 2.86 (dd, J=18.2, 9.2 Hz, 1H), 2.70 (dd, J=18.2, 4.8 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 180.09, 177.44, 157.56, 147.53, 136.45, 129.56, 128.85, 127.49, 126.62, 126.18, 121.59, 38.52, 37.61, 34.06, 24.89.

    苄基-3-(喹啉-2-亚甲基)吡咯烷-2, 5-二酮(IIIq):白色固体, 产率76%. m.p. 112~114 ℃ (lit.[21] 112~113 ℃); 1H NMR (600 MHz, CDCl3) δ: 7.93 (d, J=8.4 Hz, 1H), 7.68 (d, J=8.3 Hz, 1H), 7.58~7.51 (m, 2H), 7.42 (t, J=7.1 Hz, 1H), 7.39~7.35 (m, 2H), 7.26~7.21 (m, 3H), 7.14 (d, J=8.4 Hz, 1H), 4.69 (q, J=14.0 Hz, 2H), 3.43 (qd, J=16.0, 5.6 Hz, 2H), 3.35~3.28 (m, 1H), 2.79 (qd, J=18.2, 7.1 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ: 179.73, 176.83, 157.45, 147.48, 136.48, 136.04, 129.52, 128.99, 128.57, 127.82, 127.43, 126.76, 126.25, 121.53, 42.52, 38.67, 37.30, 33.90.

    2-(3-硝基-2-苯基丙基)喹啉(IIIr):黑色固体, 产率48%. m.p. 82~83 ℃ (lit.[21] 82~84 ℃); 1H NMR (600 MHz, CDCl3) δ: 8.04 (dd, J=20.1, 8.4 Hz, 2H), 7.76 (d, J=8.1 Hz, 1H), 7.70 (t, J=8.2 Hz, 1H), 7.51 (t, J=7.5 Hz, 1H), 7.29~7.22 (m, 5H), 7.13 (d, J=8.4 Hz, 1H), 4.84 (dd, J=12.7, 5.6 Hz, 1H), 4.78~4.71 (m, 1H), 4.25~4.15 (m, 1H), 3.36 (d, J=7.6 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ: 158.47, 147.77, 139.36, 136.73, 129.80, 128.96, 128.91, 127.76, 127.63, 127.55, 126.85, 126.37, 121.75, 79.68, 43.93, 42.42.

    2-[1-苯基-2-(喹啉-2-亚基)乙基]丙二腈(IIIs)[21]:橙色粘稠液体, 产率72%. 1H NMR (600 MHz, CDCl3) δ: 8.04 (d, J=8.2 Hz, 2H), 7.77 (d, J=8.1 Hz, 1H), 7.71 (t, J=7.7 Hz, 1H), 7.51 (t, J=7.5 Hz, 1H), 7.46 (d, J=7.3 Hz, 2H), 7.36 (dt, J=26.2, 7.2 Hz, 3H), 7.19 (d, J=8.4 Hz, 1H), 5.11 (d, J=5.0 Hz, 1H), 4.10 (dt, J=9.8, 4.9 Hz, 1H), 3.67 (dd, J=16.0, 9.9 Hz, 1H), 3.48 (dd, J=16.0, 4.8 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 157.39, 147.69, 137.24, 137.07, 130.02, 129.19, 128.96, 128.21, 127.76, 127.05, 126.67, 121.92, 112.64, 112.12, 44.49, 39.64, 28.67.

    辅助材料(Supporting Information)   所合成全部产物的核磁谱图以及部分化合物的高分辨质谱图.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.

    1. [1]

      (a) Duanmu, D. -D. ; Liang, B. -J. ; Jiang, Q. -B. ; Yan, H. Chin. J. Org. Chem. 2017, 37, 2669 (in Chinese).
      (端木丹丹, 梁柏健, 蒋其柏, 燕红, 有机化学, 2017, 37, 2669. )
      (b) Joshua, R. -H. ; Jeffrey, A. -B. ; Jonathan, A. -E. Chem. Rev. 2017, 117, 9163.
      (c) Yang, L. ; Huang, H. M. Chem. Rev. 2015, 115, 3468.
      (d) Yan, G. M. ; Wu, X. M. ; Yang, M. H. Org. Biomol. Chem. 2013, 11, 5558.
      (e) Qian, B. ; Guo, S. M. ; Shao, J. P. ; Zhu, Q. M. ; Yang, L. ; Xia, C. G. ; Huang, H. M. J. Am. Chem. Soc. 2010, 132, 3650.

    2. [2]

      (a) Tobisu, M. ; Chatani, N. Angew. Chem. , Int. Ed. 2006, 45, 1683.
      (b) Campos, K. -R. Chem. Soc. Rev. 2007, 36, 1069.
      (c) Jazzar, R. ; Hitce, J. ; Renaudat, A. ; Sofack-Kreutzer, J. ; Baudoin, O. Chem. -Eur. J. 2010, 16, 2654.
      (d) Ramirez, T. -A. ; Zhao, B. ; Shi, Y. Chem. Soc. Rev. 2012, 41, 931.

    3. [3]

      (a) Behr, J. -B. ; Gourlain, T. ; Helimi, A. ; Guillerm, G. Bioorg. Med. Chem. Lett. 2003, 13, 1713.
      (b) Heasley, B. H. ; Jarosz, R. ; Carter, K. M. ; Jenny, V. S. ; Lynch, K. R. ; Macdonald, T. L. Bioorg. Med. Chem. Lett. 2004, 14, 4069.

    4. [4]

      (a) Landa, A. ; Minkkila, A. ; Blay, G. ; Jergensen, K. A. Chem. -Eur. J. 2006, 12, 3472.
      (b) Woods, C. R. ; Benaglia, M. ; Siegel, J. S. ; Cozzi, F. Angew. Chem. , Int. Ed. 1996, 35, 1830.
      (c) Puglisi, A. ; Benaglia, M. ; Annunziata, R. ; Bologna, A. Tetrahedron Lett. 2003, 44, 2947.
      (d) Chinchilla, R. ; Najera, C. ; Yus, M. Chem. Rev. 2004, 104, 2667.

    5. [5]

      (a) Chiu, Y. -H. ; Dos, S. O. ; Canary, J. W. Tetrahedron 1999, 55, 12069.
      (b) Pickaert, G. ; Cesario, M. ; Ziessel, R. J. Org. Chem. 2004, 69, 5335.
      (c) Ziessel, R. ; Pickaert, G. ; Camerel, F. ; Donnio, B. ; Guillon, D. ; Cesario, M. ; Prangé, T. J. Am. Chem. Soc. 2004, 126, 12403.
      (d) Zhu, Y. ; Pavlos, C. M. ; Toscano, J. P. ; Dore, T. M. J. Am. Chem. Soc. 2006, 128, 4267.

    6. [6]

      (a) Mori, K. ; Kawasaki, T. ; Akiyama, T. Org. Lett. 2012, 14, 1436.
      (b) Zhang, S. -Y. ; Tu, Y. -Q. ; Fan, C. -A. ; Zhang, F. -M. ; Shi, L. Angew. Chem., Int. Ed. 2009, 121, 8917.
      (c) Blocker, M. ; Immaneni, S. ; Shaikh, A. Tetrahedron Lett. 2014, 55, 5572.

    7. [7]

      (a) Gao, X. ; Zhang, F. ; Deng, G. ; Li, Y. Org. Lett. 2014, 16, 3664.
      (b) Jin, T. ; Himuro, M. ; Yamamoto, Y. J. Am. Chem. Soc. 2010, 132, 5590.
      (c) Niu, R. ; Xiao, J. ; Liang, T. ; Li, X. Org. Lett. 2012, 14, 676.

    8. [8]

      Dai, S.; Ju, Y.-H.; Barnes, C.-E. J. Chem. Soc., Dalton. Trans. 1999, 8, 1201. http://pubs.acs.org/cgi-bin/abstract.cgi/jpcbfk/2006/110/i13/abs/jp0602373.html

    9. [9]

      (a) Wei, G. -T. ; Yang, Z. ; Chen, C. -J. Anal. Chim. Acta 2003, 488, 183.
      (b) Visser, A. -E. ; Jensen, M. -P. ; Laszak, I. Inorg. Chem. 2003, 42, 2197.

    10. [10]

      Visser, A.-E.; Rogers, R.-D. J. Solid. State. Chem. 2003, 171, 109. doi: 10.1016/S0022-4596(02)00193-7

    11. [11]

      (a) Luo, H. ; Dai, S. ; Bonnesen, P. -V. Anal. Chem. 2004, 76, 3078.
      (b) Han, X. ; Armstrong, D. -W. Acc. Chem. Res. 2007, 40, 1079.

    12. [12]

      (a) Zhang, C. -Y. ; Shi, R. -B. ; Chen, C. -Y. ; Jin, C. -M. Chin. J. Org. Chem. 2013, 33, 611 (in Chinese).
      (张传越, 石若冰, 陈才元, 金传明, 有机化学, 2013, 33, 611. )
      (b) Li, J. X. ; Yang, S. R. ; Wu, W. Q. ; Jiang, H. F. Eur. J. Org. Chem. 2018, 1284.
      (c) Li, J. X. ; Li, C. ; Ouyang, L. ; Li, C. S. ; Wu, W. Q. ; Jiang, H. F. Org. Biomol. Chem. 2017, 15, 7898.
      (d) Li, J. X. ; Li, C. ; Ouyang, L. ; Li, C. S. ; Yang, S. R. ; Wu, W. Q. ; Jiang, H. F. Adv. Synth. Catal. 2018, 360, 1138.

    13. [13]

      Xu, J.-M.; Wu, Q.; Zhang, Q.-Y.; Zhang, F.; Lin, X.-F. Eur. J. Org. Chem. 2007, 1798.

    14. [14]

      (a) Nobuoka, K. ; Kitaoka, S. ; Kunimitsu, K. ; Iio, M. ; Harran, T. ; Wakisaka, A. ; Ishikawa, Y. J. Org. Chem. 2005, 70, 10106.
      (b) Kumar, A. ; Pawar, S. S. J. Org. Chem. 2007, 72, 8111.

    15. [15]

      Gruttadauria, M.; Riela, S.; Aprile, C.; Meo, P. L.; Anna, F. D.; Noto, R. Adv. Synth. Catal. 2006, 348, 82. doi: 10.1002/(ISSN)1615-4169

    16. [16]

      Xin, X.; Guo, X.; Duan, H.-F.; Lin, Y.-J.; Sun, H. Catal. Commun. 2007, 8, 115. http://www.sciencedirect.com/science/article/pii/S1566736706001749

    17. [17]

      Zhao, X.-L.; Liu, L.; Chen, Y.-J.; Wang, D. Tetrahedron 2006, 62, 7113. doi: 10.1016/j.tet.2006.04.075

    18. [18]

      (a) Law, M. C. ; Cheung, T. W. ; Wong, K. Y. ; Chan, T. H. J. Org. Chem. 2007, 72, 923.
      (b) Xiao, Y. ; Malhotra, S. V. J. Organomet. Chem. 2005, 690, 3609.

    19. [19]

      (a) Conte, V. ; Floris, B. ; Galloni, P. ; Mirruzzo, V. ; Scarso, A. ; Sordi, D. ; Strukul, G. Green Chem. 2005, 7, 262.
      (b) Paul, F. Coord. Chem. Rev. 2000, 203, 269.

    20. [20]

      Lei, Z.-L.; Chen, B.-H.; Li, C.-Y.; Liu, H. Chem. Rev. 2008, 108, 1419. doi: 10.1021/cr068441+

    21. [21]

      Li, H.-Y.; Xing, L.-J.; Xu, T.; Wang, P. Tetrahedron Lett. 2013, 54, 858. doi: 10.1016/j.tetlet.2012.11.100

  • 图式1  推测的反应机理

    Scheme 1  Proposed mechanism for the model reaction

    表 1  添加离子液体对反应产率的影响a

    Table 1.  Effect of different ionic liquid on the yield

    Entry Ionic liquid Yieldb/%
    1 1-乙基-3-甲基咪唑四氟硼酸盐 53
    2 1-丁基-3-甲基咪唑四氟硼酸盐 55
    3 1-己基-3-甲基咪唑四氟硼酸盐 58
    4 1-辛基-3-甲基咪唑四氟硼酸盐 64
    5 1-乙基-3-甲基咪唑六氟磷酸盐 50
    6 1-丁基-3-甲基咪唑六氟磷酸盐 53
    7 1-已基-3-甲基咪唑六氟磷酸盐 52
    8 1-辛基-3-甲基咪唑六氟磷酸盐 59
    9 1-丁基-3-甲基咪唑氯盐 57
    10 1-丁基-3-甲基咪唑溴盐 60
    11 去离子水 48
    a Reaction conditions: N-phenylmaleimide (0.75 mmol), 2-methyl quinoline (0.5 mmol), 1 mL of 50% IL aqueous solution at 60 ℃ for 12 h. b Isolated yield after column chromatography.
    下载: 导出CSV

    表 2  离子液体浓度对反应产率的影响a

    Table 2.  Effect of ionic liquid concentration on the yield

    Entry IL concentration/% Yieldb/%
    1 10 60
    2 20 70
    3 30 67
    4 40 65
    5 60 47
    6 80 32
    7 100 16
    a Reaction conditions: N-phenylmaleimide (0.75 mmol), 2-methyl quinoline (0.5 mmol), 1 mL of IL aqueous solution at 60 ℃ for 12 h. b Isolated yield after column chromatography.
    下载: 导出CSV

    表 3  温度对反应产率的影响a

    Table 3.  Effect of temperature on the yield

    Entry Temperature/℃ Yieldb/%
    1 60 70
    2 70 74
    3 80 63
    4 90 59
    5 100 55
    a Reaction conditions: N-phenylmaleimide (0.75 mmol), 2-methyl quinoline (0.5 mmol), 1 mL of 20% IL aqueous solution for 12 h. b Isolated yield after column chromatography.
    下载: 导出CSV

    表 4  底物摩尔比对反应产率的影响a

    Table 4.  Effect of molar ratio of substrate on the yield

    Entry Ia/mmol IIa/mmol Yieldb/%
    1 0.75 0.5 60
    2 0.5 0.5 55
    3 0.5 0.75 74
    4 0.5 1 79
    5 0.5 1.5 84
    6 0.5 2 85
    a Reaction conditions: specified amounts of N-phenylmaleimide and 2-methyl quinoline, 1 mL of 20% IL aqueous solution at 70 ℃ for 12 h. b Isolated yield after column chromatography.
    下载: 导出CSV

    表 5  反应时间对反应产率的影响a

    Table 5.  Effect of reaction time on the yield

    Entry Time/h Yieldb/%
    1 3 49
    2 6 81
    3 12 85
    4 15 86
    5 18 88
    6 21 87
    7 24 86
    a Reaction conditions: N-phenylmaleimide (0.5 mmol), 2-methyl quinoline (1.5 mmol), 1 mL of 20% IL aqueous solution at 70 ℃. b Isolated yield after column chromatography.
    下载: 导出CSV

    表 6  离子液体的循环使用a

    Table 6.  Recycle of IL

    Entry Cycle number Yieldb/%
    1 1 77
    2 2 74
    a Reaction conditions: N-phenylmaleimide (0.5 mmol), 2-methyl quinoline (1.5 mmol), 1 mL of 20% IL aqueous solution at 70 ℃ for 6 h. b Isolated yield after column chromatography.
    下载: 导出CSV

    表 7  2-甲基氮杂芳烃苄位C(sp3)—H官能化反应a

    Table 7.  Benzylic C(sp3)—H functionalization reaction of 2-methylazaarenes

    Entry 2-Methylazaarene (I) Olefin () Product Yieldb/%
    1 81
    2 77
    3 75
    4 75
    5 79
    6 82
    7 68
    8 18
    9 23
    10 65
    11 69
    12 76
    13 70
    14 78
    15 82
    16 64
    17 76
    18 48
    19 72
    a Reaction conditions: 2-methylazaarene (0.5 mmol), electron-deficient olefin (1.5 mmol), 1 mL of 20% IL aqueous solution at 70 ℃ for 6 h. b Isolated yield after column chromatography.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  6
  • 文章访问数:  1270
  • HTML全文浏览量:  167
文章相关
  • 发布日期:  2018-08-01
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-03-16
  • 网络出版日期:  2018-08-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章