仿生细胞中肌动蛋白聚合行为的研究进展

唐寅朝 徐伟丽 韩晓军

引用本文: 唐寅朝, 徐伟丽, 韩晓军. 仿生细胞中肌动蛋白聚合行为的研究进展[J]. 分析化学, 2021, 49(6): 881-892. doi: 10.19756/j.issn.0253-3820.210409 shu
Citation:  TANG Yin-Zhao,  XU Wei-Li,  HAN Xiao-Jun. Research Progress of Actin Polymerization in Artificial Cells[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 881-892. doi: 10.19756/j.issn.0253-3820.210409 shu

仿生细胞中肌动蛋白聚合行为的研究进展

    通讯作者: 徐伟丽,E-mail:weilixu@hit.edu.cn; 韩晓军,E-mail:hanxiaojun@hit.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21773050,21929401,31501481)和黑龙江省杰出青年科学基金项目(No.JC2018003)资助。

摘要: 肌动蛋白是一种细胞骨架蛋白,在细胞中以丝状或交联束状网络的形式存在。肌动蛋白参与生物体内的许多关键生理过程,如细胞分裂、形变、运动和迁移等。自下而上重建肌动蛋白丝/网络有助于探究细胞的一系列生理活动。本文介绍了肌动蛋白聚合机理、溶液环境及仿生细胞中肌动蛋白聚合行为的研究进展,总结了不同环境中肌动蛋白聚合的特点,并对肌动蛋白自组装在人造细胞领域的发展前景进行了展望。

English


    1. [1]

      VARKUTI B, YANG Z, KINTSES B, ERDELYI P, BARDOS I, KOVACS A, HARI P, KELLERMAYER M, VELLAI T, MALNASI A. Nat. Struct. Mol. Biol., 2012, 19(3): 299-306.

    2. [2]

      FLETCHER D, MULLINS D. Nature, 2010, 463(7280): 485-492.

    3. [3]

      LI X, SENDA K, ITO A, SOGO Y, YAMAZAKI A. Biomed. Mater., 2008, 3(4): 450-459.

    4. [4]

      WESOLOWSKA N, AVILOV I, MACHADO P, GEISS C, KONDO H, MORI M, LENART P. eLife, 2020, 9(3): 449-470.

    5. [5]

      BECKER W, ERWIN W. Biol. Chem., 2006, 387(4): 401-406.

    6. [6]

      DOOLITTLE L, ROSEN M, SHAE B. Methods Mol. Biol., 2013, 1046(15): 273-293.

    7. [7]

      CARLIER M, PERNIER J, MONTAVILLE P, SHEKHAR S, KUHN S. Cell Mol. Life Sci., 2015, 72(16): 3051-3067.

    8. [8]

      WANG M, NAI M, HUANG R, LEO H, LIM C, CHEN C. Lab Chip, 2021, 21(4): 764-774.

    9. [9]

      WALDE P. Bioessays, 2010, 32(4): 296-303.

    10. [10]

      TSAI F, KOENDERINK G. Langmuir, 2011, 27(16): 10061-10071.

    11. [11]

      WANG X, TIAN L, REN Y, ZHAO Z, DU H, ZHANG Z, DRINKWATER B W, MANN S, HAN X. Small, 2020, 16(27): 1-6.

    12. [12]

      WANG X, TIAN L, DU H, LI M, MU W, DRINKWATER B W, HAN X, MANN S. Chem. Sci., 2019, 10(41): 9446-9453.

    13. [13]

      JANMEY P, IIDA K, YINH, STOSSEL T. J. Biol. Chem., 1987, 262(25): 12228-12236.

    14. [14]

      MIYAMOTO S. BBA-Gen. Subjects, 1995, 1244(1): 85-91.

    15. [15]

      ZONG W, MA S, ZHANG X, WANG X, LI Q, HAN X. J. Am. Chem. Soc., 2017, 139(29): 9955-9960.

    16. [16]

      BI H, FU D, WANG L, HAN X. ACS Nano, 2014, 8(4): 3961-3969.

    17. [17]

      SKRUBER K, WARP P, SHKLYAROV R, THOMAS J, SWANSON M, HENTY L, READ T, VITRIOL E. Curr. Biol., 2020, 30(14): 2651-2664.

    18. [18]

      WANG R, CARLSSON A. Phys. Biol., 2015, 12(6): 66-68.

    19. [19]

      NAKANO K, MABUCHI I. Genes Cells, 2006, 11(8): 893-905.

    20. [20]

      SCIPION C, GHOSHDASTIDER U, FERRER F J, YUEN T Y, WONGSANTICHON J, ROBINSON R C. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(41): 10345-10350.

    21. [21]

      MAITI B, DUTTA P, SEAL S, PAL S, MAITI S. J. Mater. Chem. B., 2017, 5(6): 1218-1226.

    22. [22]

      SCHMITT N, HABENER J. Exp. Cell. Res., 2004, 295(1): 236-244.

    23. [23]

      ABEYARATNE R, PUNTEL E, TOMASSETTI G. Int. J. Solids Struct., 2020, 198(2020): 87-98.

    24. [24]

      NI Q, PAPOIAN G. Cytoskeleton, 2019, 76(11-12): 562-570.

    25. [25]

      KOESTLER S, STEFFEN A, NEMETHOVA M, WINTERHOFF M, LUO N, HOLLEBOOM J, KRUPP J, JACOB S, VINZENZ M, SCHUR F, SCHLUTER K, GUNNING P, WINKLER C, SCHMEISER C, FAIX J, STRADAL T, SMALL J, ROTTNER K. Mol. Biol. Cell, 2013, 24(18): 2861-2875.

    26. [26]

      TANG J, JANMEY P. J. Biol. Chem., 1996, 271(15): 8556-8563.

    27. [27]

      DESHPANDE S, PFOHL T. Biomicrofluidics, 2012, 6(3): 34120-34134.

    28. [28]

      TOLBERT C, BURRIDGE K, CAMPBELL S. Cell Adhes. Migr., 2013, 7(2): 219-225.

    29. [29]

      HUMPHRIES J, WANG P, STREULI C, GEIGER B, HUMPHRIES M, Christoph B. J. Cell Biol., 2007, 179(5): 1043-1057.

    30. [30]

      PARK J, LEE M, LEE B, CASTANEDA N, TETARD L, KANG E. FEBS Lett., 2020, 595(1): 26-40.

    31. [31]

      MAVRAKIS M, AZOUGROS Y, TSAI F C, ALVARADO J, BERTIN A, IV F, KRESS A, BRASSELET S, KOENDERINK G, LECUIT T. Nat. Cell Biol., 2014, 16(4): 322-334.

    32. [32]

      LI Z, LIU H LI J, YANG Q FENG Z, LI Y, YANG H, YU C, WAN J, LIU W, ZHANG M. Structure, 2019, 27(1): 27-38.

    33. [33]

      NAGY S, RICCA B L, NORSTROM M F, COURSON D S, BRAWLEY C M, SMITHBACK P A, ROCK R S, STANISLA V. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(28): 9616-9620.

    34. [34]

      LOMBARDO A, NELSON S, KENNEDY G, TRYBUS K, DAVID M. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(17): 526-540.

    35. [35]

      GARDEL M, SHIN J, MACKINTOSH F, MAHADEVAN L, MATSUDAIRA P, WEITZ D. Science, 2004, 304(5675): 1301-1305.

    36. [36]

      EGUCHI A, FUKUDA S, KURATSUNE H, NOJIMA J, NAKATOMI Y, WATANABE Y, FELDSTEIN A. Brain Behav. Immun., 2020, 84(7): 106-114.

    37. [37]

      LI Y, CHRISTENSEN J, HOMA K, HOCKY G, FOK A, SEES J, VOTH G, KOVAR D. Mol. Biol. Cell, 2016, 27(11): 1821-183.

    38. [38]

      YAMASHI S, MATSUMURA F. J. Biol. Chem., 1985, 260(8): 5087-5097.

    39. [39]

      LE S, YU M., BERSHADSKY A, YAN J. Semin Cell Dev. Biol., 2020, 102: 73-80.

    40. [40]

      ELLIOTT P, GOULT B, KOPP P, BATE N, GROSSMANN J, ROBERTS G, CRITCHLEY D, BARSUKOV I. Structure, 2010, 18(10): 1289-1299.

    41. [41]

      KISELAR J, JANMEY P, ALMO S, CHANCE M.Proc. Natl. Acad. Sci. U. S. A., 2003, 100(7): 3942-3947.

    42. [42]

      CASELLA J, MAACK D, LIN S. J. Biol. Chem., 1986, 261(23): 915-921.

    43. [43]

      ROBINSON R, TURBEDSKY K, KAISER D, MARCHAND J, HIGGS H, CHOE S, POLLARD T. Science, 2001, 294(5547): 1679-1684.

    44. [44]

      WIOLAND H, JEGOU A, ROMET G. Mol. Biol. Cell, 2018, 29(26): 85-86.

    45. [45]

      BLANCHOIN L, POLLARD T. J. Biol. Chem., 1998, 273(39): 25106-25111.

    46. [46]

      ZAMBON P, PALANI S, JADHAV S, GAYATHRI P, BALASUBRAMANIAN M. Mol. Biol. Cell., 2020, 31(19): 2107-2114.

    47. [47]

      SCHMOLLER K, LIELEG O, BAUSCH A. Biophys. J., 2009, 97(1): 83-89.

    48. [48]

      DAS S, DURER Z, GRINTSEVICH, ZHOU Z, REISLER E. Structure, 2020, 28(5): 586-593.

    49. [49]

      NALDI M, VASINA E, DOBROIU S, PARAOAN L, DAN V, ANDRISANO V. Spie. Bios., 2009,7188(5): 45-52.

    50. [50]

      LI T, BIELING P, MULLINS D, FLETCHER D. Biophys. J., 2019, 116(3): 252A.

    51. [51]

      IDESES Y, BRILL-KARNIELY Y, HAVIV L, BEN-SHAUL A, BERNHEIM A. PloS One, 2008, 3(9): e3297.

    52. [52]

      WONG G, TANG J, LIN A, LI Y, JANMEY P, SAFINYA C. Science, 2000, 288(5473): 2035-2039.

    53. [53]

      WANG C, GENG Y, SUN Q, XU J, LU Y. Small, 2020, 16(51): 2313-2322.

    54. [54]

      SIMEONE M, SIBILLO V, TASSIERI M, GUIDO S. J. Rheol., 2002, 46(5): 1263-1278.

    55. [55]

      LI M, LI D. J. Colloid Interf. Sci., 2021, 582(2021): 102-111.

    56. [56]

      SAKUTA H, HAYASHI M, TAKIGUCHI K, TSUMOTO K, YOSHIKAWA K. Eur. Biophys. J.,2019, 48: S229.

    57. [57]

      BI H, MA S, LI Q, HAN X. J. Mater. Chem. B, 2016, 4(19): 3269-3277.

    58. [58]

      CLAESSENS M, THARMANN R, KROY K, BAUSCH A. Nat. Phys., 2006, 2(3): 186-189.

    59. [59]

      ZHANG X, ZONG W, BI H, ZHAO K, FUHS T, HU Y, CHENG W, HAN X. Eur. J. Pharm. Biopharm., 2018, 127: 177-182.

    60. [60]

      CASTANEDA N, LEE M, JACQUEZ H, MARRACINO R, MERLINO T, KANG H. J. Phys. Chem. B, 2019, 123(13): 2770-2779.

    61. [61]

      FONZO S, BELLICH B, GAMINI A, QUADRI N, CESARO A. Polymer, 2019, 175(26): 57-64.

    62. [62]

      NAKATANI N, SAKUTA H, HAYASHI M, TANAKA S, TAKIGUCHI K, TSUMOTO K, YOSHIKAWA K. ChemBioChem, 2018, 19(13): 1370-1374.

    63. [63]

      MCCALL P, SRIVASTAVA S, PERRY S, KOVAR D, GARDEL M, TIRRELL M. Biophys. J., 2018, 114(7): 1636-1645.

    64. [64]

      SCHEFF D, WEIRICH K, DASBISWAS K, PATEL A, VAIKUNTANATHAN S, GARDEL M. Soft Matter, 2020, 16(24): 5659-5668.

    65. [65]

      HAN X, ACHALKUMAR A, CHEETHAM M, CONNELL S D, JOHNSON B R, BUSHBY R, EVANS S. ChemPhysChem, 2010, 11(3): 569-574.

    66. [66]

      HAN X, QI G, XU X, WANG L. Chem. -Eur. J., 2011, 17(52): 14741-14744.

    67. [67]

      HE J, WEI Z, WANG L, TOMOVA Z, BABU T, WANG C, HAN X J, FOURKAS J. Angew. Chem., Int. Ed., 2013, 125(9): 2523-2528.

    68. [68]

      WANG L, LIU Y, HE J, HOURWITZ M, YANG Y, FOURKAS J, HAN X, NIE Z. Small, 2015, 11(31): 3762-3767.

    69. [69]

      LI Q, WANG X, MA S, ZHANG Y, HAN X. Colloids Surf., B, 2016, 147(2016): 368-375.

    70. [70]

      CHEETHAM M, BRAMBLE J, MCMILLAN D, KRZEMINSKI L, HAN X, JOHNSON B, BUSHBY, OLMSTED P, JEUKEN L, MARRITT S, BUTT J, EVANS S. J. Am. Chem. Soc., 2011, 133(17): 6521-6524.

    71. [71]

      HAN X, CHEETHAM M, SHEIKH K, OLMSTED P, BUSHBY R, EVANS S. Integr. Biol., 2009, 1(2): 205-211.

    72. [72]

      HAN X, CRITCHLEY K, ZHANG L, PRADEEP S, BUSHBY R, EVANS S. Langmuir, 2007, 23(3): 1354-1358.

    73. [73]

      LI S, WANG X, MU W, HAN X. Anal. Chem., 2019, 91(10): 6859-6864.

    74. [74]

      ZHU C, ZHANG Y, WANG Y, LI Q, MU W, HAN X. Chem.-Eur. J., 2016, 22(9): 2906-2909.

    75. [75]

      ZONG W, ZHANG X, LI C, HAN X. ACS Synth. Biol., 2018, 7(3): 945-951.

    76. [76]

      LI Q, LI S, ZHANG X, XU W, HAN X. Nat. Commun., 2020, 11(1): 232.

    77. [77]

      ZHU C, LI Q, DONG M, HAN X. Anal. Chem., 2018, 90(24): 14363-14367.

    78. [78]

      ZHANG X, ZONG W, CHENG W, HAN X. J. Mater. Chem. B, 2018, 6(32): 5243-5247.

    79. [79]

      ZONG W, LI Q, ZHANG X, HAN X. Colloids Surf., B, 2018, 172(2018): 459-463.

    80. [80]

      WANG X, DU H, WANG Z, MU W, HAN X. Adv. Mater, 2021, 33(6): 2002635.

    81. [81]

      RIZZELLI F, MALABARBA M, SIGISMUND S, MAPELLI M. Open Biol., 2020, 10(3): 2046-2441.

    82. [82]

      WU S, BEZANILLA M. eLife, 2014, 3(23): 03498-03506.

    83. [83]

      PALUCH E. Biophys. J., 2015, 108(2): 4A.

    84. [84]

      BASHIRZADEH Y, WUBSHET N, LIU A. Fronts Mol. Biosci., 2020, 7(61): 277-287.

    85. [85]

      TSAI F, KOENDERINK G. Soft Matter, 2015, 11(45): 8834-8847.

    86. [86]

      JIMENEZ A, ROCHE M, PINOT M, PANIZZA P, COURBIN L, GUEROUI Z. Lab Chip, 2011, 11(3): 429-434.

    87. [87]

      HUBER F, STREHLE D, KAS J. Soft Matter, 2012, 8(4): 931-936.

    88. [88]

      MIYAZAKI M, CHIBA M, EGUCHI H, OHKI T, ISHIWATA S. Nat. Cell Biol., 2015, 17(4): 480-489.

    89. [89]

      PERRIER D, VAHID A, KATHAVI V, STAM L, REMS L, MULLA Y, MURALIDHARAN A, KOENDERINK G, KREUTZER M BOUKANY P. Sci. Rep., 2019, 9: 8151.

    90. [90]

      LIU A, RICHMOND D, MAIBAUM L, PRONK S, GEISSLER P, FLETCHER D. Nat. Phys., 2008, 4(10): 789-793.

    91. [91]

      LEE K, PARK S, LEE K, KIM S, KIM H, MEROZ Y, MAHADEVAN L, JUNG K, AHN T, PARKER K, SHIN K. Nat. Biotechnol., 2018, 36(6): 530-535.

    92. [92]

      WANG Y, WANG J C, ZHANG H H, GUO D D, HE G Q, SUN G Y. Ecotoxicol. Environ. Safe., 2021, 209: 111844.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  1194
  • HTML全文浏览量:  232
文章相关
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-05-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章