Large Amplitude Oscillatory Shear Studies on the Strain-stiffening Behavior of Gelatin Gels

Wei-xiang Sun Li-zhen Huang Yan-rui Yang Xin-xing Liu Zhen Tong

Citation:  Wei-xiang Sun, Li-zhen Huang, Yan-rui Yang, Xin-xing Liu, Zhen Tong. Large Amplitude Oscillatory Shear Studies on the Strain-stiffening Behavior of Gelatin Gels[J]. Chinese Journal of Polymer Science, 2015, 33(1): 70-83. doi: 10.1007/s10118-015-1559-5 shu

Large Amplitude Oscillatory Shear Studies on the Strain-stiffening Behavior of Gelatin Gels

    通讯作者: Zhen Tong, mcztong@scut.edu.cn
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 21204023), the National Basic Research Program of China (973 Program, 2012CB821504) and the Open Fund of the State Key Laboratory of Pulp and Paper Engineering (201346).

摘要: Linear and nonlinear viscoelasticity of gelatin solutions was investigated by rheology. The dynamic mechanical properties during the sol-gel transition of gelatin followed the time-cure superposition. The fractal dimension df of the critical gel was estimated as 1.76, which indicated a loose network. A high sol fraction ws = 0.61 was evaluated from the plateau modulus by semi-empirical models. Strain-stiffening behavior was observed under large amplitude oscillatory shear (LAOS) for the gelatin gel. The strain and frequency dependence of the minimum strain modulus GM, energy dissipation Ed, and nonlinear viscoelastic parameter NE was illustrated in Pipkin diagrams and explained by the strain induced helix formation reported previously by others. The BST model described the strain-stiffening behavior of gelatin gel quite well, whereas the Gent and worm-like chain network models overestimated the strain-stiffening at large strains.

English

  • 
    1. [1]

      Ward, A.G. and Courts, A., Science and Technology of Gelatin. Academic Press, London, 1977

    2. [2]

      te Nijenhuis, K., in Thermoreversible Networks -- Viscoelastic Properties and Structure of Gels. Springer, Berlin/Heidelberg, 1997, vol. 130, chap. 10, p. 160

    3. [3]

      Harrington, W.F. and Rao, N.V., Biochemistry, 1970, 9(19): 3714

    4. [4]

      Djabourov, M., Leblond, J. and Papon, P., J. Phys. Fr., 1988, 49(2): 333

    5. [5]

      Joly-Duhamel, C., Hellio, D., Ajdari, A. and Djabourov, M., Langmuir, 2002, 18(19): 7158

    6. [6]

      Baziwane, D. and He, Q., Food Rev. Int., 2003, 19(4): 423

    7. [7]

      Olsen, D., Yang, C., Bodo, M., Chang, R., Leigh, S., Baez, J., Carmichael, D., Perl, M., Hmlinen, E.R., Jarvinen, M. and Polarek, J., Adv. Drug Delivery Rev., 2003, 55(12): 1547

    8. [8]

      Bonacucina, G., Cespi, M., Misici-Falzi, M. and Palmieri, G.F., J. Pharm. Sci., 2009, 98(1): 1

    9. [9]

      Lee, K.Y. and Mooney, D.J., Chem. Rev., 2001, 101(7): 1869

    10. [10]

      Gilbert, P.M., Havenstrite, K.L., Magnusson, K.E.G., Sacco, A., Leonardi, N.A., Kraft, P., Nguyen, N.K., Thrun, S., Lutolf, M.P. and Blau, H.M., Science, 2010, 329(5995): 1078

    11. [11]

      Discher, D.E., Janmey, P. and Wang, Y.-l., Science, 2005, 310(5751): 1139

    12. [12]

      Bot, A., van Amerongen, I.A., Groot, R.D., Hoekstra, N.L. and Agterof, W.G.M., Polym. Gels Networks, 1996, 4(3): 189

    13. [13]

      Groot, R.D., Bot, A. and Agterof, W.G.M., J. Chem. Phys., 1996, 104(22): 9202

    14. [14]

      McEvoy, H., Ross-Murphy, S.B. and Clark, A.H., Polymer, 1985, 26(10): 1483

    15. [15]

      Blatz, P.J., Sharda, S.C. and Tschoegl, N.W., Trans. Soc. Rheol., 1974, 18(1): 145

    16. [16]

      Treloar, L.R.G., The physics of rubber elasticity. Oxford University Press, Oxford, 2005

    17. [17]

      Mooney, M., J. Appl. Phys., 1940, 11(9): 582

    18. [18]

      Rivlin, R.S., Phil. Trans. R. Soc. Lond. Ser. A, 1948, 241(835): 379

    19. [19]

      Gent, A.N., Rubber Chem. Technol., 1996, 69(1): 59

    20. [20]

      Ogden, R.W., Proc. R. Soc. A, 1972, 326(1567): 565

    21. [21]

      James, H.M. and Guth, E., J. Chem. Phys., 1943, 11(10): 455

    22. [22]

      Wang, M.C. and Guth, E., J. Chem. Phys., 1952, 20(7): 1144

    23. [23]

      Flory, P.J. and Rehner, J., J. Chem. Phys., 1943, 11(11): 512

    24. [24]

      Treloar, L.R.G., Trans. Faraday Soc., 1946, 42(0): 83

    25. [25]

      Arruda, E.M. and Boyce, M.C., J. Mech. Phys. Solids, 1993, 41(2): 389

    26. [26]

      Wu, P.D. and Van Der Giessen, E., J. Mech. Phys. Solids, 1993, 41(3): 427

    27. [27]

      Ronca, G. and Allegra, G., J. Chem. Phys., 1975, 63(11): 4990

    28. [28]

      Flory, P.J., Gordon, M. and McCrum, N.G., Proc. R. Soc. A, 1976, 351(1666): 351

    29. [29]

      Heinrich, G., Straube, E. and Helmis, G., in Polymer Physics. Springer, Berlin Heidelberg, 1988, vol. 85, chap. 2, p. 33

    30. [30]

      Miehe, C., Gktepe, S. and Lulei, F., J. Mech. Phys. Solids, 2004, 52(11): 2617

    31. [31]

      Boyce, M.C. and Arruda, E.M., Rubber Chem. Technol., 2000, 73(3): 504

    32. [32]

      Gottlieb, M. and Gaylord, R.J., Polymer, 1983, 24(12): 1644

    33. [33]

      Marckmann, G. and Verron, E., Rubber Chem. Technol., 2006, 79(5): 835

    34. [34]

      Onck, P.R., Koeman, T., van Dillen, T. and van der Giessen, E., Phys. Rev. Lett., 2005, 95(17): 178102

    35. [35]

      Heussinger, C., Schaefer, B. and Frey, E., Phys. Rev. E, 2007, 76(3): 031906

    36. [36]

      Stein, A.M., Vader, D.A., Weitz, D.A. and Sander, L.M., Complexity, 2011, 16(4): 22

    37. [37]

      Vader, D., Kabla, A., Weitz, D. and Mahadevan, L., PLoS ONE, 2009, 4(6): e5902

    38. [38]

      Motte, S. and Kaufman, L.J., Biopolymers, 2013, 99(1): 35

    39. [39]

      Haut, R.C. and Little, R.W., J. Biomech., 1972, 5(5): 423

    40. [40]

      Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F. and Leyvraz, P.F., J. Biomech., 1998, 31(8): 753

    41. [41]

      Semmrich, C., Larsen, R.J. and Bausch, A.R., Soft Matter, 2008, 4(8): 1675

    42. [42]

      Sanjeevi, R., Somanathan, N. and Ramaswamy, D., J. Biomech., 1982, 15(3): 181

    43. [43]

      Wilking, J.N. and Mason, T.G., Phys. Rev. E, 2008, 77(5): 055101

    44. [44]

      Hyun, K., Wilhelm, M., Klein, C.O., Cho, K.S., Nam, J.G., Ahn, K.H., Lee, S.J., Ewoldt, R.H. and McKinley, G.H., Prog. Polym. Sci., 2011, 36(12): 1697

    45. [45]

      Wilhelm, M., Macromol. Mater. Eng., 2002, 287(2): 83

    46. [46]

      Wilhelm, M., Maring, D. and Spiess, H.W., Rheol. Acta, 1998, 37(4): 399

    47. [47]

      Cho, K.S., Hyun, K., Ahn, K.H. and Lee, S.J., J. Rheol., 2005, 49(3): 747

    48. [48]

      Ewoldt, R.H., Hosoi, A.E. and McKinley, G.H., J. Rheol., 2008, 52(6): 1427

    49. [49]

      Yu, W., Wang, P. and Zhou, C., J. Rheol., 2009, 53(1): 215

    50. [50]

      Ewoldt, R.H., Hosoi, A.E. and McKinley, G.H., Integr. Comp. Biol., 2009, 49(1): 40

    51. [51]

      Yu, W., Du, Y. and Zhou, C., J. Rheol., 2013, 57(4): 1147

    52. [52]

      Sun, W., Yang, Y., Wang, T., Liu, X., Wang, C. and Tong, Z., Polymer, 2011, 52(6): 1402

    53. [53]

      Shu, R., Sun, W., Wang, T., Wang, C., Liu, X. and Tong, Z., Colloids Surf. A, 2013, 434(0): 220

    54. [54]

      Shu, R., Sun, W., Liu, Y., Wang, T., Wang, C., Liu, X. and Tong, Z., Colloids Surf. A, 2013, 436(0): 912

    55. [55]

      Pipkin, A.C., Lectures on Viscoelasticity Theory (Applied Mathematical Sciences). Springer, 1972, p. 180

    56. [56]

      Yoshimura, K., Terashima, M., Hozan, D. and Shirai, K., J. Agric. Food Chem., 2000, 48(3): 685

    57. [57]

      Boedtker, H. and Doty, P., J. Phys. Chem., 1954, 58(11): 968

    58. [58]

      Csonka, F.A., Murphy, J.C. and Jones, D.B., J. Am. Chem. Soc., 1926, 48(3): 763

    59. [59]

      Laurent, J.L., Janmey, P.A. and Ferry, J.D., J. Rheol., 1980, 24(1): 87

    60. [60]

      Ewoldt, R., Winter, P., Maxey, J. and McKinley, G., Rheol. Acta, 2010, 49(2): 191

    61. [61]

      Ferry, J.D., Viscoelastic properties of polymers. John Wiley Sons, ed. 3rd, 1980

    62. [62]

      Winter, H.H. and Chambon, F., J. Rheol., 1986, 30(2): 367

    63. [63]

      Chambon, F. and Winter, H.H., Polym. Bull., 1985, 13(6): 499

    64. [64]

      Adolf, D. and Martin, J.E., Macromolecules, 1990, 23(15): 3700

    65. [65]

      Schultz, K.M., Baldwin, A.D., Kiick, K.L. and Furst, E.M., ACS Macro Lett., 2012, 1(6): 706

    66. [66]

      Tixier, T., Tordjeman, P., Cohen-Solal, G. and Mutin, P.H., J. Rheol., 2004, 48(1): 39

    67. [67]

      Larsen, T.H. and Furst, E.M., Phys. Rev. Lett., 2008, 100(14): 146001

    68. [68]

      Larsen, T.H., Rajagopal, K., Schneider, J.P. and Furst, E.M., AIP Conf. Proc., 2008, 1027(1): 1090

    69. [69]

      Corrigan, A. and Donald, A., Eur. Phys. J. E, 2009, 28(4): 457

    70. [70]

      Corrigan, A.M. and Donald, A.M., Langmuir, 2009, 25(15): 8599

    71. [71]

      Corrigan, A.M. and Donald, A.M., Soft Matter, 2010, 6(17): 4105

    72. [72]

      Gong, Z., Yang, Y., Ren, Q., Chen, X. and Shao, Z., Soft Matter, 2012, 8(10): 2875

    73. [73]

      Groot, R.D. and Agterof, W.G.M., Macromolecules, 1995, 28(18): 6284

    74. [74]

      Bot, A., Wientjes, R.H.W. and de Haas, K.H., Imaging Sci. J., 1997, 45: 191

    75. [75]

      Cumper, C.W.N. and Alexander, A.E., Aust. J. Sci. Res, Ser. A: Phys.. Sci., 1952, 5(1): 153

    76. [76]

      Gilsenan, P.M. and Ross-Murphy, S.B., Food Hydrocolloids, 2000, 14(3): 191

    77. [77]

      Gilsenan, P.M. and Ross-Murphy, S.B., J. Rheol., 2000, 44(4): 871

    78. [78]

      Sarabia, A.I., Gmez-Guilln, M.C. and Montero, P., Food Chem., 2000, 70(1): 71

    79. [79]

      Fernndez-Daz, M.D., Montero, P. and Gmez-Guilln, M.C., Food Chem., 2001, 74(2): 161

    80. [80]

      Haug, I.J., Draget, K.I. and Smidsrd, O., Food Hydrocolloids, 2004, 18(2): 203

    81. [81]

      Ferry, I.J.D. and Eldridge, J.E., J. Phys. Colloid Chem., 1948, 53(1): 184

    82. [82]

      Eldridge, J.E. and Ferry, J.D., J. Phys. Chem., 1954, 58(11): 992

    83. [83]

      Sheppard, S.E. and Sweet, S.S., J. Am. Chem. Soc., 1921, 43(3): 539

    84. [84]

      Hsu, S.h. and Jamieson, A.M., Polymer, 1993, 34(12): 2602

    85. [85]

      te Nijenhuis, K., Makromol. Chem., 1991, 192(3): 603

    86. [86]

      Ng, T.S.K., McKinley, G.H. and Ewoldt, R.H., J. Rheol., 2011, 55(3): 627

    87. [87]

      Kang, H., Wen, Q., Janmey, P.A., Tang, J.X., Conti, E. and MacKintosh, F.C., J. Phys. Chem. B, 2009, 113(12): 3799

    88. [88]

      Darvish, K.K. and Crandall, J.R., Med. Eng. Phys., 2001, 23(9): 633

    89. [89]

      Dokos, S., LeGrice, I.J., Smaill, B.H., Kar, J. and Young, A.A., J. Biomech. Eng., 2000, 122(5): 471

    90. [90]

      Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C. and Janmey, P.A., Nature, 2005, 435(7039): 191

    91. [91]

      Kutter, S. and Terentjev, E.M., Eur. Phys. J. E, 2002, 8(5): 539

    92. [92]

      Courty, S., Gornall, J.L. and Terentjev, E.M., Biophys. J., 2006, 90(3): 1019

    93. [93]

      Courty, S., Gornall, J.L. and Terentjev, E.M., Proc. Natl. Acad. Sci. U. S. A., 2005, 102(38): 13457

    94. [94]

      Papon, A., Merabia, S., Guy, L., Lequeux, F., Montes, H., Sotta, P. and Long, D.R., Macromolecules, 2012, 45(6): 2891

    95. [95]

      Mallik, A.K., Kher, V., Puri, M. and Hatwal, H., J. Sound Vibration, 1999, 219(2): 239

    96. [96]

      Palmer, J.S. and Boyce, M.C., Acta Biomater., 2008, 4(3): 597

    97. [97]

      Horgan, C.O. and Saccomandi, G., Biomech. Model. Mechanobiol., 2003, 1(4): 251

    98. [98]

      Horgan, C.O. and Saccomandi, G., Math. Mech. Solids, 2002, 7(4): 353

    99. [99]

      Horgan, C. and Saccomandi, G., J. Elasticity, 2002, 68(1): 167

    100. [100]

      Beatty, M.F., J. Elasticity, 2003, 70(1): 65

    101. [101]

      Pezron, I., Djabourov, M. and Leblond, J., Polymer, 1991, 32(17): 3201

    102. [102]

      MacKintosh, F.C., Ks, J. and Janmey, P.A., Phys. Rev. Lett., 1995, 75(24): 4425

    103. [103]

      Ma, J., Narayanan, H., Garikipati, K., Grosh, K. and Arruda, E.M., in IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, Garikipati, K., Arruda, E. M., Eds. Springer Netherlands, 2010, vol. 16, p. 3

    104. [104]

      Gouinlock, E.V., Flory, P.J. and Scheraga, H.A., J. Polym. Sci., 1955, 16(82): 383

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1442
  • HTML全文浏览量:  30
文章相关
  • 发布日期:  2015-01-05
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-07-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章