Flame-retardant Wrapped Ramie Fibers towards Suppressing Candlewick Effect of Polypropylene/Ramie Fiber Composites

Shuang-lan Du Xue-bao Lin Rong-kun Jian Cong Deng Yu-zhong Wang

Citation:  Shuang-lan Du, Xue-bao Lin, Rong-kun Jian, Cong Deng, Yu-zhong Wang. Flame-retardant Wrapped Ramie Fibers towards Suppressing Candlewick Effect of Polypropylene/Ramie Fiber Composites[J]. Chinese Journal of Polymer Science, 2015, 33(1): 84-94. doi: 10.1007/s10118-015-1560-z shu

Flame-retardant Wrapped Ramie Fibers towards Suppressing Candlewick Effect of Polypropylene/Ramie Fiber Composites

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 50933005 and 51121001) and the Program for Changjiang Scholars and Innovative Research Team in Universities (IRT1026).

摘要: In this work, a flame-retardant polypropylene (PP)/ramie fiber (RF) composite was prepared. The ramie fibers were wrapped chemically by a phosphorus- and nitrogen-containing flame retardant (FR) produced via in situ condensation reaction so as to suppress their candlewick effect. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) demonstrated that the ramie fibers wrapped chemically by FR (FR-RF) were obtained successfully. Thermogravimatric test showed that the PP/FR-RF composite had more residue and better thermal stability at high temperatures than the PP/RF composite. Cone calorimeter (CC) results indicated that the peak of heat release rate (PHRR) and total heat release (THR) correspondingly decreased by 23.4% and 12.5% compared with the values of neat PP/RF. The PP/FR-RF composite created a continuous and compact char layer after the combustion. Combining FTIR analysis of char residue after CC test with heat conduction coefficient results, it could be concluded that the charring of FR on RF greatly weakened the candlewick effect of RF, and more char residue in the RF domain facilitated the formation of more continuous and compact char layer in the whole combustion zone, consequently protected PP composites during combustion, resulting in the better flame retardancy of PP/FR-RF composite than that of PP/RF composite.

English

  • 
    1. [1]

      Suppakarn, N. and Jarukumjorn, K., Compos. Part B: Eng., 2009, 40: 613

    2. [2]

      Akil, H., Omar, M., Mazuki, A., Safiee, S., Ishak, Z. and Abu Bakar, A., Mater. Design, 2011, 32: 4107

    3. [3]

      Yan, Z., Wang, H., Lau, K., Pather, S., Zhang, J., Lin, G. and Ding, Y., Compos. Part B: Eng., 2012, 46: 221

    4. [4]

      Sapuan, S.M., Lok, H.Y., Ishak, M. R. and Misri, S., Chinese J. Polym. Sci., 2013, 31(10): 1394

    5. [5]

      Yu, T., Ren, J., Li, S., Yuan, H. and Li, Y., Compos. Part A-Appl. Sci. Manuf., 2010, 41: 499

    6. [6]

      Liu, X.H., Xiong, Z.H. and Liu, W., China Plastics Industry (in Chinese), 2007, 10: 009

    7. [7]

      He, L.P., Tian, Y. and Wang, L.L., Adv. Mater. Res., 2008, 41: 313

    8. [8]

      Feng, Y., Hu, Y., Zhao, G., Yin, J. and Jiang, W., J. Appl. Polym. Sci., 2011, 122: 1564

    9. [9]

      Xiao, S.S., Chen, M.J., Dong, L.P. and Wang, Y.Z., Chinese J. Polym. Sci., 2014, 32(1): 98

    10. [10]

      Sain, M., Park, S., Suhara, F. and Law, S., Polym. Degrad. Stab., 2004, 83: 363

    11. [11]

      Koz?owski, R. and W?adyka-Przybylak, M., Polym. Adv. Technol., 2008, 19: 446

    12. [12]

      Chapple, S. and Anandjiwala, R., J. Thermoplast. Compos. Mater., 2010, 23: 871

    13. [13]

      Le Bras, M., Duquesne, S., Fois, M., Grisel, M. and Poutch, F., Polym. Degrad. Stab., 2005, 88: 80

    14. [14]

      Li, S.M, Ren, J., Yang, H., Yang, T. and Yang, W.Z., Polym. Int., 2010, 59: 242

    15. [15]

      Chen, D., Li, J. and Ren, J., Polym. Int., 2011, 60: 599

    16. [16]

      Jimenez, M., Duquesne, S. and Bourbigot, S., Polym. Degrad. Stab., 2013, 98: 1378

    17. [17]

      Zhao, B., Hu, Z., Chen, L., Liu, Y., Liu, Y., and Wang, Y.Z., J. Appl. Polym. Sci., 2011, 119: 2379

    18. [18]

      Liu, Y., Deng, C.L., Zhao, J., Wang, J.S., Chen, L. and Wang, Y.Z., Polym. Degrad. Stab., 2011, 96: 363

    19. [19]

      Horrocks, A.R. and Price, D., Fire Retardant Materials, Woodhead Publishing, Cambridge, 2001, p. 293

    20. [20]

      Zhang, T., Yan, H., Peng, M., Wang, L., Ding, H. and Fang, Z., Nanoscale, 2013, 5: 3013

    21. [21]

      Wladyka-Przybylak, M. and Kozlowski, R., Fire Mater., 1999, 23: 33

    22. [22]

      Lu, X., Yan, H., Wang, H., Cheng, J. and Fang, Z., Acta Materiae Compositae Sinica (in Chinese), 2011, 28: 1

    23. [23]

      Song, P.A., Xu, L.H., Guo, Z.H., Zhang, Y. and Fang, Z.P., J. Mater. Chem., 2008, 18: 5083

    24. [24]

      Keener, T., Stuart, R. and Brown, T., Compos. Part A-Appl. Sci. Manuf., 2004, 35: 357

    25. [25]

      Wang, N., Zhang, J., Fang, Q. and Hui, D., Compos. Part B: Eng., 2013, 44: 467

    26. [26]

      Ma, H., Tong, L., Xu, Z., Fang, Z., Jin, Y. and Lu, F., Polym. Degrad. Stab., 2007, 92: 720

    27. [27]

      Peng, D., Sun, Y.M. and Yang, L.X., New Chem. Mater., 2011, 39: 26

    28. [28]

      Zhu, J., Morgan, A.B.,Lamelas, F.J. and Wilkie, C.A., Chem. Mater., 2001, 13: 3774

    29. [29]

      Zanetti, M., Kashiwagi, T., Falqui, L. and Camino, G., Chem. Mater., 2002, 14: 881

    30. [30]

      Zhang, C., Price, L.M. and Daly, W.H., Biomacromolecules, 2006, 7: 139

    31. [31]

      Sevilla, M. and Fuertes, A., Carbon, 2009, 47: 2281

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1299
  • HTML全文浏览量:  33
文章相关
  • 发布日期:  2015-01-05
  • 收稿日期:  2014-04-03
  • 修回日期:  2014-05-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章