Microscopic Investigation of Ethylene Carbonate Interface: A Molecular Dynamics and Vibrational Spectroscopic Study

Lin WANG Liang XIN Tatsuya ISHIYAMA Qiling PENG Shen YE Akihiro MORITA

Citation:  WANG Lin, XIN Liang, ISHIYAMA Tatsuya, PENG Qiling, YE Shen, MORITA Akihiro. Microscopic Investigation of Ethylene Carbonate Interface: A Molecular Dynamics and Vibrational Spectroscopic Study[J]. Acta Physico-Chimica Sinica, 2018, 34(10): 1124-1135. doi: 10.3866/PKU.WHXB201801291 shu

Microscopic Investigation of Ethylene Carbonate Interface: A Molecular Dynamics and Vibrational Spectroscopic Study

    通讯作者: MORITAAkihiro, morita@tohoku.ac.jp
摘要: Ethylene carbonate (EC) liquid and its vapor-liquid interface were investigated using a combination of molecular dynamics (MD) simulation and vibrational IR, Raman and sum frequency generation (SFG) spectroscopies. The MD simulation was performed with a flexible and polarizable model of the EC molecule newly developed for the computation of vibrational spectra. The internal vibration of the model was described on the basis of the harmonic couplings of vibrational modes, including the anharmonicity and Fermi resonance coupling of C=O stretching. The polarizable model was represented by the charge response kernel (CRK), which is based on ab initio molecular orbital calculations and can be readily applied to other systems. The flexible and polarizable model can also accurately reproduce the structural and thermodynamic properties of EC liquid. Meanwhile, a comprehensive set of vibrational spectra of EC liquid, including the IR and Raman spectra of the bulk liquid as well as the SFG spectra of the liquid interface, were experimentally measured and reported. The set of experimental vibrational spectra provided valuable information for validating the model, and the MD simulation using the model comprehensively elucidates the observed vibrational IR, Raman, and SFG spectra of EC liquid. Further MD analysis of the interface region revealed that EC molecules tend to orientate themselves with the C=O bond parallel to the interface. The MD simulation explains the positive Im[$ \chi ^{(2)}$](ssp) band of the C=O stretching region in the SFG spectrum in terms of the preferential orientation of EC molecules at the interface. This work also elucidates the distinct lineshapes of the C=O stretching band in the IR, Raman, and SFG spectra. The lineshapes of the C=O band are split by the Fermi resonance of the C=O fundamental and the overtone of skeletal stretching. The Fermi resonance of C=O stretching was fully analyzed using the empirical potential parameter shift analysis (EPSA) method. The apparently different lineshapes of the C=O stretching band in the IR, Raman, and SFG spectra were attributed to the frequency shift of the C=O fundamental in different solvation environments in the bulk liquid and at the interface. This work proposes a systematic procedure for investigating the interface structure and SFG spectra, including general modeling procedure based on ab initio calculations, validation of the model using available experimental data, and simultaneous analysis of molecular orientation and SFG spectra through MD trajectories. The proposed procedure provides microscopic information on the EC interface in this study, and can be further applied to investigate other interface systems, such as liquid-liquid and solid-liquid interfaces.

English

    1. [1]

      Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. -J. Electrochim. Acta 2004, 50, 247. doi: 10.1016/j.electacta.2004.01.090

    2. [2]

      Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g

    3. [3]

      Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w

    4. [4]

      Aurbach, D.; Markovsky, B.; Salitra, G.; Markevich, E.; Talyossef, Y.; Koltypin, M.; Nazar, L.; Ellis, B.; Kovacheva, D. J. Power Sources 2007, 165, 491. doi: 10.1016/j.jpowsour.2006.10.025

    5. [5]

      Xu, K.; von Cresce, A. J. Mater. Chem. 2011, 21, 9849. doi: 10.1039/C0JM04309E

    6. [6]

      Augustsson, A.; Herstedt, M.; Guo, J. -H.; Edstrom, K.; Zhuang, G. V.; Ross, P. N., Jr.; Rubensson, J. -E.; Nordgren, J. Phys. Chem. Chem. Phys. 2004, 6, 4185. doi: 10.1039/B313434B

    7. [7]

      Zhao, L.; Watanabe, I.; Doi, T.; Okada, S.; Yamaki, J. J. Power Sources 2006, 161, 1275. doi: 10.1016/j.jpowsour.2006.05.045

    8. [8]

      Liu, N.; Li, H.; Wang, Z.; Huang, X.; Chen, L. Electrochem. Solid-State Lett. 2006, 9, A328. doi: 10.1149/1.2200138

    9. [9]

      Zhuang, G. V.; Xu, K.; Yang, H.; Jow, T. R.; Ross, P. N., Jr. J. Phys. Chem. B 2005, 109, 17567. doi: 10.1021/jp052474w

    10. [10]

      Yamada, Y.; Koyama, Y.; Abe, T.; Ogumi, Z. J. Phys. Chem. C 2009, 113, 8948. doi: 10.1021/jp9022458

    11. [11]

      Jeong, S. -K.; Song, H. -Y.; Kim, S. I.; Abe, T.; Jeon, W. S.; Yin, R. -Z.; Kim, Y. S. Electrochem. Commun. 2013, 31, 24. doi: 10.1016/j.elecom.2013.02.019

    12. [12]

      Liu, H.; Tong, Y.; Kuwata, N.; Osawa, M.; Kawamura, J.; Ye, S. J. Phys. Chem. C 2009, 113, 20531. doi: 10.1021/jp907146n

    13. [13]

      Yu, L.; Liu, H.; Wang, Y.; Kuwata, N.; Osawa, M.; Kawamura, J.; Ye, S. Angew. Chem. Int. Ed. 2013, 52, 5753. doi: 10.1002/anie.201209976

    14. [14]

      Horowitz, Y.; Han, H. -L.; Ross, P. N.; Somorjai, G. A. J. Am. Chem. Soc. 2016, 138, 726. doi: 10.1021/jacs.5b10333

    15. [15]

      Nicolau, B. G.; Garca-Rey, N.; Dryzhakov, B.; Dlott, D. D. J. Phys. Chem. C 2015, 119, 10227. doi: 10.1021/acs.jpcc.5b01290

    16. [16]

      Mukherjee, P.; Lagutchev, A.; Dlott, D. D. J. Electrochem. Soc. 2012, 159, A244. doi: 10.1149/2.022203jes

    17. [17]

      Richmond, G. L. Chem. Rev. 2002, 102, 2693. doi: 10.1021/cr0006876

    18. [18]

      Tian, C.; Shen, Y. Surf. Sci. Rep. 2014, 69, 105. doi: 10.1016/j.surfrep.2014.05.001

    19. [19]

      Ishiyama, T.; Imamura, T.; Morita, A. Chem. Rev. 2014, 114, 8447. doi: 10.1021/cr4004133

    20. [20]

      Morita, A.; Hynes, J. T. Chem. Phys. 2000, 258, 371. doi: 10.1021/jp0133438

    21. [21]

      Morita, A.; Hynes, J. T. J. Phys. Chem. B 2002, 106, 673. doi: 10.1021/jp0133438

    22. [22]

      Perry, A.; Ahlborn, H.; Moore, P.; Space, B. J. Chem. Phys. 2003, 118, 8411. doi: 10.1063/1.1565994

    23. [23]

      Walker, D. S.; Hore, D. K.; Richmond, G. L. J. Phys. Chem. B 2006, 110, 20451. doi: 10.1021/jp063063y

    24. [24]

      Morita, A.; Ishiyama, T. Phys. Chem. Chem. Phys. 2008, 10, 5801. doi: 10.1039/B808110G

    25. [25]

      Auer, B. M.; Skinner, J. L. J. Phys. Chem. B 2009, 113, 4125. doi: 10.1021/jp806644x

    26. [26]

      Tainter, C.; Pieniazek, P.; Lin, Y.; Skinner, J. J. Chem. Phys. 2011, 134, 184501. doi: 10.1063/1.3587053

    27. [27]

      Nagata, Y.; Mukamel, S. J. Am. Chem. Soc. 2010, 132, 6434. doi: 10.1021/ja100508n

    28. [28]

      Hall, S. A.; Jena, K. C.; Trudeau, T. G.; Hore, D. K. J. Phys. Chem. C 2011, 115, 11216. doi: 10.1021/jp2025208

    29. [29]

      Nagata, Y.; Hsieh, C. -S.; Hasegawa, T.; Voll, J.; Backus, E. H. G.; Bonn, M. J. Phys. Chem. Lett. 2013, 4, 1872. doi: 10.1021/jz400683v

    30. [30]

      Medders, G. R.; Paesani, F. J. Am. Chem. Soc. 2016, 138, 3912. doi: 10.1021/jacs.6b00893

    31. [31]

      Ishiyama, T.; Sokolov, V. V.; Morita, A. J. Chem. Phys. 2011, 134, 024510. doi: 10.1063/1.3514146

    32. [32]

      Kawaguchi, T.; Shiratori, K.; Henmi, Y.; Ishiyama, T.; Morita, A. J. Phys. Chem. C 2012, 116, 13169. doi: 10.1021/jp302684q

    33. [33]

      Wang, L.; Peng, Q.; Ye, S.; Morita, A. J. Phys. Chem. C 2016, 120, 15185. doi: 10.1021/acs.jpcc.6b03935

    34. [34]

      Wang, L.; Ishiyama, T.; Morita, A. J. Phys. Chem. A 2017, 121, 6701. doi: 10.1021/acs.jpca.7b05378

    35. [35]

      Morita, A.; Kato, S. J. Am. Chem. Soc. 1997, 119, 4021. doi: 10.1021/ja9635342

    36. [36]

      Ishida, T.; Morita, A. J. Chem. Phys. 2006, 125, 074112. doi: 10.1063/1.2219746

    37. [37]

      Ishiyama, T.; Morita, A. J. Chem. Phys. 2009, 131, 244714. doi: 10.1063/1.3279126

    38. [38]

      Ishiyama, T.; Morita, A. J. Phys. Chem. C 2011, 115, 13704. doi: 10.1021/jp200269k

    39. [39]

      Ishiyama, T.; Sokolov, V. V.; Morita, A. J. Chem. Phys. 2011, 134, 024509. doi: 10.1063/1.3514139

    40. [40]

      Wang, L.; Ishiyama, T.; Morita, A. J. Phys. Chem. A 2017, 121, 6687. doi: 10.1021/acs.jpca.7b05320

    41. [41]

      Morita, A.; Kato, S. J. Chem. Phys. 1998, 108, 6809. doi: 10.1063/1.476096

    42. [42]

      Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. 1979, 101, 2550. doi: 10.1021/ja00504a009

    43. [43]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    44. [44]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    45. [45]

      Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153

    46. [46]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2010.

    47. [47]

      Heinz, H.; Suter, U. W. J. Phys. Chem. B 2004, 108, 18341. doi: 10.1021/jp048142t

    48. [48]

      Morita, A.; Kato, S. J. Phys. Chem. A 2002, 106, 3909. doi: 10.1021/jp014114o

    49. [49]

      Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760

    50. [50]

      Martinez, L.; Andrade, R.; Birgin, E. G.; Martinez, J. M. J. Comp. Chem. 2009, 30, 2157. doi: 10.1002/jcc.21224

    51. [51]

      Nose, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334

    52. [52]

      Hoover, W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695

    53. [53]

      Kagaku Binran(Japanese), 4th ed.; The Chemical Society of Japan, Ed.; Maruzen: Tokyo, Japan, 1993.

    54. [54]

      Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys. 1994, 101, 4177. doi: 10.1063/1.467468

    55. [55]

      Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, UK, 1987.

    56. [56]

      Fincham, D. Mol. Sim. 1994, 13, 1. doi: 10.1080/08927029408022180

    57. [57]

      Yu, Q.; Ye, S. J. Phys. Chem. C 2015, 119, 12236. doi: 10.1021/acs.jpcc.5b03370

    58. [58]

      Ye, S.; Noda, H.; Morita, S.; Uosaki, K.; Osawa, M. Langmuir 2003, 19, 2238. doi: 10.1021/la0266233

    59. [59]

      Ye, S.; Kathiravan, A.; Hayashi, H.; Tong, Y.; Infahsaeng, Y.; Chabera, P.; Pascher, T.; Yartsev, A. P.; Isoda, S.; Imahori, H.; et al. J. Phys. Chem. C 2013, 117, 6066. doi: 10.1021/jp400336r

    60. [60]

      Ye, S.; Tong, Y.; Ge, A.; Qiao, L.; Davies, P. B. Chem. Rec. 2014, 14, 791. doi: 10.1002/tcr.201402039

    61. [61]

      Peng, Q.; Liu, H.; Ye, S. J. Electroanal. Chem. 2017, 800, 134. doi: 10.1016/j.jelechem.2016.09.006, Special Issue in honor of Masatoshi Osawa

    62. [62]

      McQuarrie, D. A. Statistical Mechanics; University Science Books: Sausalito, CA, USA, 2000.

    63. [63]

      Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; Dover: New York, NY, USA, 1955.

    64. [64]

      Peppel, W. J. Ind. Eng. Chem. 1958, 50, 767. doi: 10.1021/ie50581a030

    65. [65]

      Verevkin, S. P.; Toktonov, A. V.; Chernyak, Y.; Schaffner, B.; Borner, A. Fluid Phase Equilib. 2008, 268, 1. doi: 10.1016/j.fluid.2008.03.013

    66. [66]

      Naejus, R.; Lemordant, D.; Coudert, R.; Willmann, P. J. Chem. Thermodyn. 1997, 29, 1503. doi: 10.1006/jcht.1997.0260

    67. [67]

      Walton, J.; Tildesley, D.; Rowlinson, J.; Henderson, J. Mol. Phys. 1983, 48, 1357. doi: 10.1080/00268978300100971

    68. [68]

      Matsumoto, M.; Kataoka, Y. J. Chem. Phys. 1988, 88, 3233. doi: 10.1063/1.453919

  • 加载中
计量
  • PDF下载量:  8
  • 文章访问数:  662
  • HTML全文浏览量:  88
文章相关
  • 发布日期:  2018-10-15
  • 收稿日期:  2017-12-26
  • 接受日期:  2018-01-22
  • 修回日期:  2018-01-22
  • 网络出版日期:  2018-10-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章