实验法探究Type-II模型和全固态Z-Scheme结构模型在同种降解体系中的适配程度

黄喆奥 赵硕 余颖

引用本文: 黄喆奥,  赵硕,  余颖. 实验法探究Type-II模型和全固态Z-Scheme结构模型在同种降解体系中的适配程度[J]. 催化学报, 2020, 41(10): 1522-1534. doi: S1872-2067(19)63495-9 shu
Citation:  Zheao Huang,  Shuo Zhao,  Ying Yu. Experimental method to explore the adaptation degree of type-II and all-solid-state Z-scheme heterojunction structures in the same degradation system[J]. Chinese Journal of Catalysis, 2020, 41(10): 1522-1534. doi: S1872-2067(19)63495-9 shu

实验法探究Type-II模型和全固态Z-Scheme结构模型在同种降解体系中的适配程度

  • 基金项目:

    国家自然科学基金(21573085,51872108);武汉市应用基础前沿项目(2018010401011294);华中师范大学中央高校基本科研业务费专项资金(CCNU18TS034).

摘要: 随着光催化研究的深入开展,人们对复合催化剂的内部电子空穴转移路径产生了浓厚的兴趣,并提出几种相对合理的载流子迁移路径猜想.其中包括异质结构型(包括Type-I型异质结与Type-II型异质结)和Z-Scheme构型(包括直接Z-Scheme型异质结和间接Z-Scheme型异质结),解释了部分活性提升的机理.我们选取了全固态Z-Scheme异质结结构作为模型,制备出TiO2-C-C3N4三元复合催化剂.全固态Z-Scheme异质结结构是指在两个带隙匹配的半导体之间引入导电材料,半导体之间不直接接触.在太阳光的激发下,导电材料两侧的半导体被同时激发,电子分别从两者的价带跃迁至导带,并在价带上留下空穴.由于两者之间存在电子导体,处于中间位置的导带电子会沿电子导体运动,与处于中间位置价带的空穴复合,留下氧化还原能力较强的价带空穴和导带电子.整个反应路线形成"Z"字形状,模拟了光合作用的反应路径.我们对TiO2-C-C3N4三元催化剂以及TiO2与C3N4形成的Type-II异质结的TiO2-C3N4二元催化剂进行了XRD、SEM、TEM、BET、XPS、光电流、紫外漫反射和PL光谱等表征测试,并根据光催化实验结果解释了两种不同复合材料催化机理上的差异,证明两种不同异质结结构可以影响光催化性能.
由TEM图可知,TiO2-C-C3N4催化剂由于碳的引入,TiO2纳米颗粒表面被碳层包裹,与未引入碳的TiO2-C3N4的TEM图像有着明显区别.由C3N4和TiO2的界面可以看出二者不是简单的物理混合,而是形成连接紧密的界面,这在光电流测试中也有体现.光催化测试中,用两种不同碳材料修饰TiO2的样品TiO2-5C3N4和TiO2-C的性能都有提高,但提高程度不同.因为TiO2-C在分离载流子时是转移并储存电子,其中TiO2的价带空穴不发生移动,而TiO2-C3N4是通过Type-II异质结的机理分离载流子,C3N4导带的电子向TiO2的导带移动,TiO2的价带空穴向C3N4的价带移动,所以空穴的氧化能力下降,而且催化性能十分依赖于空穴的氧化能力,这就导致了TiO2-C3N4的性能弱于TiO2-C.理论上看,TiO2-C3N4与TiO2-C两种催化剂性能优越,复合在一起的三元复合物形成Z-Scheme结构,有着氧化能力强的电子和还原能力强的空穴,其催化性能应该进一步提高,但是在光催化测试中TiO2-C-C3N4三元催化剂性能却大幅度下降,远不如TiO2-C3N4与TiO2-C的性能.由于TiO2-C具有较高的光催化和光电流性能,所以TiO2-C-C3N4三元催化剂的性能下降并不是碳层的影响.原因可能是,虽然Z-Scheme异质结结构的核心是处于中间位置的导带电子和价带空穴相结合,牺牲一部分氧化还原能力较弱的载流子,以保留氧化还原能力强的电子和空穴,但在TiO2和C3N4的莫特肖特基曲线测试中发现,两者的导带位置和价带位置都很接近,C3N4的价带虽然处于中间,还是具有2.12eV的价带位置,所以C3N4能产生羟基自由基(PL测试中已证明),这样C3N4的空穴仍然具有较好催化能力,这就导致Z-Scheme异质结结构牺牲C3N4价带的空穴会对催化有消极影响.另一方面,可能是理想的Z-Scheme异质结结构需要中间导带和价带的载流子能够1:1复合,但由于C3N4的光电响应能力远弱于TiO2(光电流测试中已证明),导致Z-Scheme异质结结构中光生电子和空穴的比例不一致,因此TiO2的电子没有被完全消耗掉,Z-Scheme异质结结构的传输路径中断,不能按照理想模型工作,使得TiO2-C-C3N4表现出差的光催化性能.
根据以上研究结果,我们提出了一种以宏观实验结果为主、微观内部机理为辅的方法来判断催化机理,使得更容易区分两种载流子转移模型,并探究Type-II模型和全固态Z字结构模型在同种降解体系中的适配程度,可以针对不同需求和不同环境来设计适应某些特殊降解条件的高效光催化剂.

English

    1. [1] A. A. Adeyemo, I. O. Adeoye, O. S. Bello, Appl. Water Sci., 2017,7, 543-568.

    2. [2] E. Butler, Y.-T. Hung, M. Suleiman Al Ahmad, R. Y.-L. Yeh, R. L.-H. Liu, Y.-P. Fu, Appl. Water Sci., 2017, 7, 31-51.

    3. [3] N. Zhao, Y. Liu, J. Chen, Sci. Total Environ., 2009, 407, 4946-4953.

    4. [4] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.

    5. [5] T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki, O. Ishitani, ACS Appl. Mater. Interfaces, 2011, 3, 2594-2600.

    6. [6] S. M. Gupta, M. Tripathi, Chin. Sci. Bull., 2011, 56, 1639.

    7. [7] L. Yang, B. Liu, T. Liu, X. Ma, H. Li, S. Yin, T. Sato, Y. Wang, Adv. Mater., 2017, 7, 45715.

    8. [8] T. Ji, Z. Cui, W. Zhang, Y. Cao, Y. Zhang, S.-a. He, M. Xu, Y. Sun, R. Zou, J. Hu, Dalton. Trans., 2017, 46, 4296-4302.

    9. [9] M. P. Mikhailova, A. N. Titkov, Semicond. Sci. Technol., 1994, 9, 1279-1295.

    10. [10] J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys., 2013, 15, 16883-16890.

    11. [11] L. Hu, H. He, D. Xia, Y. Huang, J. Xu, H. Li, C. He, W. Yang, D. Shu, P. K. Wong, ACS Appl. Mater. Interfaces, 2018, 10, 18693-18708.

    12. [12] H. Zhao, S. Cui, L. Yang, G. Li, N. Li, X. Li, J. Colloid Interface Sci., 2018, 512, 47-54.

    13. [13] J. S. Jang, S. H. Choi, H. G. Kim, J. S. Lee, J. Phys. Chem. C, 2008, 112, 17200-17205.

    14. [14] G. Li, L. Wu, F. Li, P. Xu, D. Zhang, H. Li, Nanoscale, 2013, 5, 2118-2125.

    15. [15] X. Wang, S. Li, Y. Ma, H. Yu, J. Yu, J. Phys. Chem. C, 2011, 115, 14648-14655.

    16. [16] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater., 2006, 5, 782-786.

    17. [17] X. Miao, X. Shen, J. Wu, Z. Ji, J. Wang, L. Kong, M. Liu, C. Song, Appl. Catal. A-Gen., 2017, 539, 104-113.

    18. [18] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, J. M, J. Mater. Chem., 2008, 18, 4893-4908.

    19. [19] J. Fu, S. Cao, J. Yu, J. Mater., 2015, 1, 124-133.

    20. [20] T. Komatsu, J. Mater. Chem., 2001, 11, 799-801.

    21. [21] Z. Li, H. Cheng, Y. Li, W. Zhang, Y. Yu, ACS Sustain. Chem. Eng., 2019, 7, 4325-4334.

    22. [22] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater., 2013, 25, 2452-2456.

    23. [23] C. Pan, J. Xu, Y. Wang, D. Li, Y. Zhu, Adv. Funct. Mater., 2012, 22, 1518-1524.

    24. [24] J. A. Singh, S. H. Overbury, N. J. Dudney, M. Li, G. M. Veith, ACS Catal., 2012, 2, 1138-1146.

    25. [25] L. A. da Silva, V. A. Alves, S. C. de Castro, J. F. C. Boodts, Colloid. Surf. A, 2000, 170, 119-126.

    26. [26] S. J. Yang, J. H. Cho, G. H. Oh, K. S. Nahm, C. R. Park, Carbon, 2009, 47, 1585-1591.

    27. [27] G. Zhang, J. Zhang, M. Zhang, X. Wang, J. Mater. Chem., 2012, 22, 8083-8091.

    28. [28] F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci., 2017, 405, 60-70.

    29. [29] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603-619.

    30. [30] Q. J. Xiang, B. Cheng, J. G. Yu, Appl. Catal. B, 2013, 138, 299-303.

    31. [31] J. Zhang, S. W. Liu, J. G. Yu, M. Jaroniec, J. Mater. Chem., 2011, 21, 14655-14662.

    32. [32] G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Ind. Eng. Chem. Res., 2014, 53, 13023-13029.

    33. [33] P. Zhou, J. Yu, M. Jaroniec, Adv. Mater., 2014, 26, 4920-4935.

    34. [34] A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc., 2002, 124, 13547-13553.

    35. [35] J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti, X. Wang, Angew. Chem. Int. Ed., 2010, 49, 441-444.

    36. [36] S. Zhu, H. Fu, S. Zhang, L. Zhang, Y. Zhu, J. Photochem. Photobiol. A, 2008, 193, 33-41.

    37. [37] T. W. Kim, K.-S. Choi, Science, 2014, 343, 990-994.

    38. [38] S. H. Zhang, K. X. Liang, Y. Tan, Adv. Mater. Res., 2011, 183-185, 2192-2196.

    39. [39] E. Chinarro, B. Moreno, J. R. Jurado, J. Eur. Ceram. Soc., 2007, 27, 3601-3604.

    40. [40] C. Pan, Y. Zhu, Environ. Sci. Technol., 2010, 44, 5570-5574.

    41. [41] A. Asghar, A. A. Abdul Raman, W. M. A. Wan Daud, J. Cleaner Prod., 2015, 87, 826-838.

    42. [42] D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater., 2005, 17, 2596-2602.

    43. [43] H. Wei, W. A. McMaster, J. Z. Y. Tan, D. Chen, R. A. Caruso, J. Mater. Chem. A, 2018, 6, 7236-7245.

    44. [44] J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci., 2017, 391, 72-123.

    45. [45] Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi, M. Jaroniec, Mater. Today, 2018, 21, 1042-1063.

    46. [46] L. L. Wang, Y. W. Zhang, C. M. Zhang, Z. D. Wang, T. Meng, Adv. Mater. Res., 2014, 887-888, 783-786.

    47. [47] G. M. Veith, L. Baggetto, L. A. Adamczyk, B. Guo, S. S. Brown, X.-G. Sun, A. A. Albert, J. R. Humble, C. E. Barnes, M. J. Bojdys, S. Dai, N. J. Dudney, Chem. Mater., 2013, 25, 503-508.

    48. [48] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955.

    49. [49] Y. Zou, J.-W. Shi, D. Ma, Z. Fan, C. Niu, L. Wang, ChemCatChem, 2017, 9, 3752-3761.

    50. [50] P. Zhou, J. Yu, M. Jaroniec, Adv. Mater., 2014, 26, 4920-4935.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  575
  • HTML全文浏览量:  43
文章相关
  • 收稿日期:  2020-02-23
  • 修回日期:  2020-03-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章