Synthesis and Characterization of Temperature-sensitive Cellulose-graft-Poly(N-isopropylacrylamide) Copolymers

Li-li Yang Jin-ming Zhang Jia-song He Jun Zhang Zhi-hua Gan

Citation:  Li-li Yang, Jin-ming Zhang, Jia-song He, Jun Zhang, Zhi-hua Gan. Synthesis and Characterization of Temperature-sensitive Cellulose-graft-Poly(N-isopropylacrylamide) Copolymers[J]. Chinese Journal of Polymer Science, 2015, 33(12): 1640-1649. doi: 10.1007/s10118-015-1703-2 shu

Synthesis and Characterization of Temperature-sensitive Cellulose-graft-Poly(N-isopropylacrylamide) Copolymers

  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China(No.51425307).

摘要: A new series of cellulose-graft-poly(N-isopropylacrylamide)(cellulose-g-PNIPAM) copolymers were prepared by atom transfer radical polymerization(ATRP) of N-isopropylacrylamide monomers from a cellulose-based macro-initiator, which was homogeneously synthesized in an ionic liquid 1-allyl-3-methylimidazolium chloride(AmimCl). The composition of cellulose-g-PNIPAM copolymers could be adjusted by altering the feeding ratio and reaction time. The resultant copolymers with relatively high content of PNIPAM segments(molar substitution of PNIPAM18.3) were soluble in water at room temperature. Aqueous solutions of cellulose-g-PNIPAM copolymers exhibited clear temperature-sensitive behavior, and their sol-to-gel phase transition properties were investigated by dynamic light scattering(DLS) and UV measurements. Compared with pure PNIPAM, the cellulose-g-PNIPAM copolymers possessed higher lower critical solution temperatures(LCST) in a range from 36.9℃ to 40.8℃, which are close to normal human body temperature, and could be tuned by adjusting the content of PNIPAM segments in copolymers. Spherical structure of cellulose-g-PNIPAM copolymers formed at temperatures above LCST and its morphology was observed by TEM and SEM. These novel cellulose-g-PNIPAM copolymers may be attractive substrates for some biomedical applications, such as drug release and tissue engineering.

English

  • 
    1. [1]

      Zhou, H.Y., Jiang, L.J., Cao, P.P., Li, J.B. and Chen, X.G., Carbohydr. Polym., 2015, 117:524

    2. [2]

      Guo, J.H., Pan, S.J., Yin, X.C., He, Y.F., Li, T. and Wang, R.M., J. Appl. Polym. Sci., 2015, 132(9):41572

    3. [3]

      Araujo, J.V., Davidenko, N., Danner, M., Cameron, R.E. and Best, S.M., J. Biomed. Mater. Res., Part A, 2014, 102(12):4415

    4. [4]

      Li, N., Li, N., Yi, Q.Y., Luo, K., Guo, C.H., Pan, D.Y. and Gu, Z.W., Biomaterials, 2014, 35(35):9529

    5. [5]

      Abeer, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M. and Martin, C., Carbohydr. Polym., 2014, 110:505

    6. [6]

      Kumashiro, Y., Yamato, M. and Okano, T., Ann. Biomed. Eng., 2010, 38(6):1977

    7. [7]

      Liu, R., Fraylich, M. and Saunders, B., Colloid Polym. Sci., 2009, 287(6):627

    8. [8]

      Hufendiek, A., Trouillet, V., Meier, M.A.R. and Barner-Kowollik, C., Biomacromolecules, 2014, 15(7):2563

    9. [9]

      Alli, S., Alli, A. and Hazer, B., J. Appl. Polym. Sci., 2012, 124(1):536

    10. [10]

      Xiao, J.J., Li, X.B., Wang, X., Yi, C.W. and Su, S.P., Chinese J. Polym. Sci., 2015, 33(3):456

    11. [11]

      Seidi, F. and Heshmati, P., Chinese J. Polym. Sci., 2015, 33(1):192

    12. [12]

      de Graaf, A.J., dos Santos, I.I.A.P., Pieters, E.H.E., Rijkers, D.T.S., van Nostrum, C.F., Vermonden, T., Kok, R.J., Hennink, W.E. and Mastrobattista, E., J. Control. Release, 2012, 162(3):582

    13. [13]

      Cheng, R., Meng, F.H., Ma, S.B., Xu, H.F., Liu, H.Y., Jing, X.B. and Zhong, Z.Y., J. Mater. Chem., 2011, 21(47):19013

    14. [14]

      Domingues, R.M.A., Gomes, M.E. and Reis, R.L., Biomacromolecules, 2014, 15(7):2327

    15. [15]

      Rajwade, J.M., Paknikar, K.M. and Kumbhar, J.V., Appl. Microbiol. Biotechnol., 2015, 99(6):2491

    16. [16]

      Yan, C., Zhang, J., Lv, Y., Yu, J., Wu, J., Zhang, J. and He, J., Biomacromolecules, 2009, 10(8):2013

    17. [17]

      Wu, J., Zhang, J., Zhang, H., He, J.S., Ren, Q. and Guo, M., Biomacromolecules, 2004, 5(2):266

    18. [18]

      Sui, X.F., Yuan, J.Y., Zhou, M., Zhang, J., Yang, H.J., Yuan, W.Z., Wei, Y. and Pan, C.Y., Biomacromolecules, 2008, 9(10):2615

    19. [19]

      Pyun, J. and Matyjaszewski, K., Chem. Mater., 2001, 13(10):3436

    20. [20]

      Jin, X., Kang, H.L., Liu, R.G. and Huang, Y., Carbohydr. Polym., 2013, 95(1):155

    21. [21]

      Zhang, H., Wu, J., Zhang, J. and He, J., Macromolecules, 2005, 38(20):8272

    22. [22]

      Mei, A.X., Guo, X.L., Ding, Y.W., Zhang, X.H., Xu, J.T., Fan, Z.Q. and Du, B.Y., Macromolecules, 2010, 43(17):7312

    23. [23]

      Yan, J., Ji, W., Chen, E., Li, Z. and Liang, D., Macromolecules, 2008, 41(13):4908

    24. [24]

      Ma, L., Kang, H.L., Liu, R.G. and Huang, Y., Langmuir, 2010, 26(23):18519

    25. [25]

      Wu, C., Ying, A. and Ren, S., Colloid Polym. Sci., 2013, 291(4):827

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1361
  • HTML全文浏览量:  54
文章相关
  • 发布日期:  2015-12-05
  • 收稿日期:  2015-04-29
  • 修回日期:  2015-05-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章