热辅助延迟荧光共轭高分子实现多种模式的电化学发光

孔怡 曾梓晖 黄萍 罗野林 张保华 陈丽娟 张玉微 韩冬雪 程延祥 牛利

引用本文: 孔怡, 曾梓晖, 黄萍, 罗野林, 张保华, 陈丽娟, 张玉微, 韩冬雪, 程延祥, 牛利. 热辅助延迟荧光共轭高分子实现多种模式的电化学发光[J]. 分析化学, 2021, 49(6): 1015-1024. doi: 10.19756/j.issn.0253-3820.210424 shu
Citation:  KONG Yi,  ZENG Zi-Hui,  HUANG Ping,  LUO Ye-Lin,  ZHANG Bao-Hua,  CHEN Li-Juan,  ZHANG Yu-Wei,  HAN Dong-Xue,  CHENG Yan-Xiang,  NIU Li. Multiple Modes of Electrochemiluminescence Using Thermally Activated Delayed Fluorescent Polymer[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 1015-1024. doi: 10.19756/j.issn.0253-3820.210424 shu

热辅助延迟荧光共轭高分子实现多种模式的电化学发光

    通讯作者: 张保华,E-mail:ccbhzhang@gzhu.edu.cn; 韩冬雪,E-mail:dxhan@gzhu.edu.cn; 牛利,E-mail:lniu@gzhu.edu.cn
  • 基金项目:

    广东省自然科学基金项目(Nos.2019B010933001,2021A1515010510)和国家自然科学基金项目(No.51773195)资助。

摘要: 热辅助延迟荧光(Thermally activated delayed fluorescent,TADF)发光材料是新型的纯有机电化学发光(Electrochemiluminescence,ECL)材料,具有合成简便、不含贵金属、生物相容性好、颜色易调节、发光效率高等优势。与传统的荧光有机材料只能利用单线态发光相比,TADF发光材料基于热活化性质,能发生快速、高效的反向系间窜越,使得三线态激子向单线态激子发生有效上转换,实现暗态三线态激子的辐射复合利用。TADF型ECL发光材料能够克服自旋禁阻效应,有望实现近100%的ECL发光效率。但目前尚未有实现全部典型模式下的ECL行为的TADF型ECL的体系材料。本研究基于一种高效的TADF共轭高分子材料,实现了全部典型的ECL发光模式(包括湮灭式、阶跃式、阳极共反应剂式和阴极共反应剂式),特别是通过优化TADF高分子电极制备条件和共反应剂用量,获得了有效的阴极共反应剂式ECL。对此TADF高分子的光物理特征、电化学和电化学发光性质进行了系统研究,与传统荧光高分子的ECL效率进行对比,证明了TADF高分子在电极修饰型ECL研究中,实现高ECL发光效率的潜在优势。

English


    1. [1]

      ZHANG Y P, ZHAO Y Q, HAN Z G, ZHANG R Z, DU P Y, WU Y X, LU X Q. Angew. Chem., Int. Ed., 2020, 59(51): 23261-23267.

    2. [2]

      KOVAC M, RISCH L, THIEL S, WEBER M, GROSSMANN K, WOHLW N, LUNG T, HILLMANN D, RITZLER M, BIGLER S, FERRARA F, BODMER T, EDLI K, IMPERIALI M, HEER S, SALIMI Y, RENZ H, KOHLER P, VERNAZZA P, KAHLERT C, PAPROTNY M, RISCH M. Diagnostics, 2020, 10(8): 593.

    3. [3]

      WEI X, ZHU M J, YAN H, LU C S, XU J J. Eur. J. Chem., 2019, 25(10): 12671-12683.

    4. [4]

      HANG Z G, YANG Z F, SUN H S, XU Y L, MA X F, SHAN D L, CHEN J, HUO S H, ZHANG Z, DU P Y, LU X Q. Angew. Chem., Int. Ed., 2019, 58(18): 5915-5919.

    5. [5]

      PENG H P, HUANG Z N, DENG H H, WU W H, HUANG K Y, LI Z L, CHEN W, LIU J W. Angew. Chem., Int. Ed., 2020, 59(25): 9982-9985.

    6. [6]

      ADSETTS J R, HOESTEREY S, GAO C J, LOVE D A, DING Z F. Langmuir, 2020, 36(47): 14432-14442.

    7. [7]

      LIU J L, ZHANG J Q, TANG Z L, ZHUO Y, CHAI Y Q, YUAN R. Chem. Sci., 2019, 10(16): 4497-4501.

    8. [8]

      TAN X, ZHANG B, ZOU G Z. J. Am. Chem. Soc., 2017, 139(25): 8772-8776.

    9. [9]

      QI H L, ZHANG C X, HUANG Z, WANG L, WANG W N, BARD A J. J. Am. Chem. Soc., 2016, 138(6): 1947-1954.

    10. [10]

      CUI L, YU S L, GAO W Q, ZHANG X M, DENG S Y, ZHANG C Y. ACS Appl. Mater. Interfaces, 2020, 12(7): 7966-7973.

    11. [11]

      LIU H W, WANG L F, GAO H F, QI H L, GAO Q, ZHANG C X. ACS Appl. Mater. Interfaces, 2017, 9(51): 44324-44331.

    12. [12]

      WANG Z Y, FENG Y Q, WANG N N, CHENG Y X, QUAN Y W, JU H X. J. Phys. Chem. Lett., 2018, 9(18): 5296-5302.

    13. [13]

      WEI X, ZHU M J, CHENG Z, LEE M J, YAN H, LU C S, XU J J. Angew. Chem., Int. Ed., 2019, 58(10): 3162-3166.

    14. [14]

      JIANG M H, LI S K, ZHONG X, LIANG W B, CHAI Y Q, ZHUO Y, YUAN R. Anal. Chem., 2019, 91(5): 3710-3716.

    15. [15]

      BARD A J. Electrogenerated Chemiluminescence. New York: Marcel Dekker, Inc., 2004: 163-211.

    16. [16]

      ISHIMATSU R, MATSUNAMI S, KASAHARA T, MIZUNO J, EDURA T, ADACHI C, NAKANO K, IMATO T. Angew. Chem., Int. Ed., 2014, 53(27): 6993-6996.

    17. [17]

      WANG S M, ZHANG H Y, ZHANG B H, XIE Z Y, WONG W Y. Mater. Sci. Eng., R, 2020, 140: 100547.

    18. [18]

      HUANG P, ZHANG B H, HU Q, ZHAO B L, ZHU Y H, ZHANG Y W, KONG Y, ZEGN Z H, BAO Y, WANG W, CHENG Y X, NIU L. ChemPhysChem, 2021, 22(8): 726-732.

    19. [19]

      BABAMIRI B, SALIMI A, HALLAJ R. Biosens. Bioelectron., 2018, 117: 332-339.

    20. [20]

      STEWART A, BROWN K, DENNANY L. Anal. Chem., 2018, 90(21): 12944-12950.

    21. [21]

      GUO S, FABIAN O, CHANG Y L, CHEN J T, LACKOWSKI W M, BARBARA P F. J. Am. Chem. Soc., 2011, 133(31): 11994-12000.

    22. [22]

      WANG Y J, ZHU Y H, XIE G H, ZHAN H M, YANG C L, CHENG Y X. J. Mater. Chem. C, 2017, 5(41): 10715-10720.

    23. [23]

      WANG F, LIN J, ZHAO T B, HU D D, WU T, LIU Y. J. Am. Chem. Soc., 2016, 138(24): 7718-7724.

    24. [24]

      ISHIMATSU R, KIRINO Y, ADACHI C, NAKANO K, IMATO T. Chem. Lett., 2016, 45(10): 1183-1185.

    25. [25]

      TAO Y, YUAN K, CHEN T, XU P, LI H H, CHEN R F, ZHENG C, ZHANG L, HUANG W. Adv. Mater., 2014, 26(47): 7931-7958.

    26. [26]

      DINI D, MARTIN R E, HOLMES A B. Adv. Funct. Mater., 2002, 12(4): 299-306.

    27. [27]

      ZHANG B H, CHENG Y X. Chem. Rec., 2019, 19(8): 1624-1643.

  • 加载中
计量
  • PDF下载量:  7
  • 文章访问数:  1572
  • HTML全文浏览量:  468
文章相关
  • 收稿日期:  2021-04-09
  • 修回日期:  2021-04-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章