多孔有机聚合物负载钯作为高效C-C偶联反应多相催化剂

戴志锋 陈芳 孙琦 纪妍妍 王亮 孟祥举 肖丰收

引用本文: 戴志锋, 陈芳, 孙琦, 纪妍妍, 王亮, 孟祥举, 肖丰收. 多孔有机聚合物负载钯作为高效C-C偶联反应多相催化剂[J]. 催化学报, 2016, 37(1): 54-60. doi: 10.1016/S1872-2067(15)60952-4 shu
Citation:  Zhifeng Dai, Fang Chen, Qi Sun, Yanyan Ji, Liang Wang, Xiangju Meng, Feng-Shou Xiao. A Pd-metalated porous organic polymer as a highly efficient heterogeneous catalyst for C-C couplings[J]. Chinese Journal of Catalysis, 2016, 37(1): 54-60. doi: 10.1016/S1872-2067(15)60952-4 shu

多孔有机聚合物负载钯作为高效C-C偶联反应多相催化剂

    通讯作者: 孟祥举
  • 基金项目:

    国家自然科学基金(21422306, 21203165, 21403193) (21422306, 21203165, 21403193)

    中央高校基本科研业务费专项资金(2015XZZX004-04). (2015XZZX004-04)

摘要: Pd催化的C-C均相偶联反应,如Suzuki,Heck和Sonogashira广泛应用于有机合成、药物化学、材料科学等领域.均相催化剂具有难分离和不易循环利用的缺点,因而其应用有所受限.因此,开发具有高稳定性和高活性以及可循环性的Pd负载的多相催化剂具有重要意义.
多孔有机聚合物具有独特的多级孔结构以及良好的稳定性,因而为制备新型的多相催化剂提供了可能.本文将乙烯基修饰的1,10-菲罗啉有机配体与二乙烯基苯共聚得到了菲罗啉功能化的多孔有机聚合物(PCP-Phen),负载Pd(OAC)2后所制催化剂(Pd/PCP-Phen)在Suzuki, Heck和Sonogashira等偶联反应中表现出优异的活性、选择性和稳定性.
固体核磁和红外结果表明所合成的多孔有机聚合物具有1,10-菲罗啉有机配体;热重分析显示该聚合物具有较高的热稳定性;N2吸附测试表明该多孔有机聚合物及其钯负载物均具有丰富的介孔结构(11.2和7.3 nm)和大的比表面积;扫描电镜和透射电镜结果确也证实了它们具有丰富的介孔结构.
X射线光电子能结果表明,Pd/POP-Phen催化剂中Pd 3d5/2和Pd 3d3/2的结合能分别为337.6和343.1 eV,略低于Pd(OAc)2的(338.6和343.8 eV).同时,该催化剂的N1s结合能为400.0 eV,高于POP-Phen的399.3 eV.由此可见,该催化剂中菲罗啉有机配体与Pd物种有很强的配位作用.
将得到的Pd/POP-Phen催化剂用于Suzuki,Sonogashira以及Heck反应.对于Suzuki反应,当以溴苯和苯硼酸为底物,乙醇和水(2:3)为溶剂时,反应30min联苯的产率高于99%;而在菲罗啉和醋酸钯(Pd/Phen)混合均相催化剂作用下,同样条件下转化率仅为1.7%.可见,Pd/POP-Phen多相催化剂在Suzuki反应中的催化活性高于均相催化剂.更为重要的是,该催化剂在循环使用五次后并未见明显的失活,且在反应液中也未检测到Pd,说明反应中金属物种基本上没有流失,与Pd/POP-Phen多相催化剂的高稳定性一致.当将反应物扩展到多种不同底物时,Pd/POP-Phen催化剂均显示出非常优异的催化性能.
在Sonogashira和Heck反应中,该多相催化剂也有非常好的催化性能.在碘苯和苯乙炔为反应物的Sonogashira反应中,于120 ℃进行30 min后,转化率即可达99%以上,高于Pd/Phen均相催化剂(93%);且该反应在没有CuI参与下也可以进行,从而避免了副产物二苯炔的形成.在碘苯和丙烯酸甲酯为底物的Heck反应中,于130 ℃只需反应20 min转化率可达到>99%,也优于相应的均相催化剂.循环实验表明,该催化剂具有很高的稳定性.
Pd/POP-Phen多相催化剂表现出高于均相催化剂的活性,主要原因归于催化剂孔道中相对较高的反应物浓度.在多相催化反应中,因为其丰富的多孔结构对反应物具有很强的富集作用,从而使得多相催化剂里的反应物浓度大大高于均相催化剂.例如,在Suzuki反应中,溴苯在多相催化剂中的浓度是均相催化体系的14倍.

English

    1. [1] F. Diederich, A. de Meijere, Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004, 4.[1] F. Diederich, A. de Meijere, Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004, 4.

    2. [2] L. X. Yin, J. Liebscher, Chem. Rev., 2007, 107, 133.[2] L. X. Yin, J. Liebscher, Chem. Rev., 2007, 107, 133.

    3. [3] N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.[3] N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457.

    4. [4] C. M. Wei, C. J. Li, J. Am. Chem. Soc., 2003, 125, 9584.[4] C. M. Wei, C. J. Li, J. Am. Chem. Soc., 2003, 125, 9584.

    5. [5] J. Magano, J. R. Dunetz, Chem. Rev., 2011, 111, 2177.[5] J. Magano, J. R. Dunetz, Chem. Rev., 2011, 111, 2177.

    6. [6] N. E. Leadbeater, M. Marco, Chem. Rev., 2002, 102, 3217.[6] N. E. Leadbeater, M. Marco, Chem. Rev., 2002, 102, 3217.

    7. [7] W. Watanabe, T. Maekawa, Y. Miyazaki, T. Kida, K. Takeshita, A. Mori, Chem Asian J., 2012, 7, 1679.[7] W. Watanabe, T. Maekawa, Y. Miyazaki, T. Kida, K. Takeshita, A. Mori, Chem Asian J., 2012, 7, 1679.

    8. [8] M. Bakherad, A. Keivanloo, S. Samangooei, Chin. J. Catal., 2014, 35, 324.[8] M. Bakherad, A. Keivanloo, S. Samangooei, Chin. J. Catal., 2014, 35, 324.

    9. [9] C. E. Garrett, K. Prasad, Adv. Synth. Catal., 2004, 346, 889.[9] C. E. Garrett, K. Prasad, Adv. Synth. Catal., 2004, 346, 889.

    10. [10] C. J. Welch, J. Albaneze-Walker, W. R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D. J. Mathre, S. Spencer, X. D. Bu, T. B. Wang, Org. Process Res. Dev., 2005, 9, 198.[10] C. J. Welch, J. Albaneze-Walker, W. R. Leonard, M. Biba, J. DaSilva, D. Henderson, B. Laing, D. J. Mathre, S. Spencer, X. D. Bu, T. B. Wang, Org. Process Res. Dev., 2005, 9, 198.

    11. [11] H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner, M. Studer, J. Mol. Catal. A, 2001, 173, 3.[11] H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner, M. Studer, J. Mol. Catal. A, 2001, 173, 3.

    12. [12] B. M. Bhanage, M. Arai, Catal. Rev., 2001, 43, 315.[12] B. M. Bhanage, M. Arai, Catal. Rev., 2001, 43, 315.

    13. [13] X. Jin, V. V. Balasubramanian, S. T. Selvan, D. P. Sawant, M. A. Chari, G. Q. Lu, A. Vinu, Angew. Chem. Int. Ed., 2009, 48, 7884.[13] X. Jin, V. V. Balasubramanian, S. T. Selvan, D. P. Sawant, M. A. Chari, G. Q. Lu, A. Vinu, Angew. Chem. Int. Ed., 2009, 48, 7884.

    14. [14] M. Kawaguchi, S. Yagi, H. Enomoto, Carbon, 2004, 42, 345.[14] M. Kawaguchi, S. Yagi, H. Enomoto, Carbon, 2004, 42, 345.

    15. [15] Q. H. Fan, Y. M. Li, A. S. C. Chan, Chem. Rev., 2002, 102, 3385.[15] Q. H. Fan, Y. M. Li, A. S. C. Chan, Chem. Rev., 2002, 102, 3385.

    16. [16] S. Minakata, M. Komatsu, Chem. Rev., 2009, 109, 711.[16] S. Minakata, M. Komatsu, Chem. Rev., 2009, 109, 711.

    17. [17] D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev., 2002, 102, 3615.[17] D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev., 2002, 102, 3615.

    18. [18] A. Taguchi, F. Schuth, Microporous Mesoporous Mater., 2005, 77, 1.[18] A. Taguchi, F. Schuth, Microporous Mesoporous Mater., 2005, 77, 1.

    19. [19] M. Hartmann, Chem. Mater., 2005, 17, 4577.[19] M. Hartmann, Chem. Mater., 2005, 17, 4577.

    20. [20] A. Corma, H. Garcia, Adv. Synth. Catal., 2006, 348, 1391.[20] A. Corma, H. Garcia, Adv. Synth. Catal., 2006, 348, 1391.

    21. [21] A. Thomas, Angew. Chem. Int. Ed., 2010, 49, 8328.[21] A. Thomas, Angew. Chem. Int. Ed., 2010, 49, 8328.

    22. [22] Q. Sun, M. Jiang, Z. J. Shen, Y. Y. Jin, S. X. Pan, L. Wang, X. J. Meng, W. Z. Chen, Y. J. Ding, J. X. Li, F-S. Xiao, Chem. Commun., 2014, 50, 11844.[22] Q. Sun, M. Jiang, Z. J. Shen, Y. Y. Jin, S. X. Pan, L. Wang, X. J. Meng, W. Z. Chen, Y. J. Ding, J. X. Li, F-S. Xiao, Chem. Commun., 2014, 50, 11844.

    23. [23] Q. Sun, Z. F. Dai, X. L. Liu, N. Sheng, F. Deng, X. J. Meng, F-S. Xiao, J. Am. Chem. Soc., 2015, 137, 5204.[23] Q. Sun, Z. F. Dai, X. L. Liu, N. Sheng, F. Deng, X. J. Meng, F-S. Xiao, J. Am. Chem. Soc., 2015, 137, 5204.

    24. [24] Q. Sun, X. J. Meng, X. L. Liu, X. M. Zhang, Y. Yang, Q. H. Yang, F-S. Xiao, Chem. Commun., 2012, 48, 10505.[24] Q. Sun, X. J. Meng, X. L. Liu, X. M. Zhang, Y. Yang, Q. H. Yang, F-S. Xiao, Chem. Commun., 2012, 48, 10505.

    25. [25] Y. Huangfu, Q. Sun, S. X. Pan, X. J. Meng, F-S. Xiao, ACS Catal., 2015, 5, 1556.[25] Y. Huangfu, Q. Sun, S. X. Pan, X. J. Meng, F-S. Xiao, ACS Catal., 2015, 5, 1556.

    26. [26] C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert, A. Thomas, Adv. Synth. Catal., 2011, 353, 3101.[26] C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert, A. Thomas, Adv. Synth. Catal., 2011, 353, 3101.

    27. [27] J. D. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson, A. M. Z. Slawin, J. Am. Chem. Soc., 2010, 132, 6243.[27] J. D. Crowley, S. M. Goldup, N. D. Gowans, D. A. Leigh, V. E. Ronaldson, A. M. Z. Slawin, J. Am. Chem. Soc., 2010, 132, 6243.

    28. [28] T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 833.[28] T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 833.

    29. [29] M. Boltz, A. Blanc, G. Laugel, P. Pale, B. Louis, Chin. J. Catal., 2011, 32, 807.[29] M. Boltz, A. Blanc, G. Laugel, P. Pale, B. Louis, Chin. J. Catal., 2011, 32, 807.

    30. [30] J. L. Hu, Y. L. Gu, Z. H. Guan, J. J. Li, W. L. Mo, T. Li, G. X. Li, ChemSusChem, 2011, 4, 1767.[30] J. L. Hu, Y. L. Gu, Z. H. Guan, J. J. Li, W. L. Mo, T. Li, G. X. Li, ChemSusChem, 2011, 4, 1767.

    31. [31] Y. X. Gao, G. Wang, L. Chen, P. X. Xu, Y. F. Zhao, Y. B. Zhou, L. B. Han, J. Am. Chem. Soc., 2009, 131, 7956.[31] Y. X. Gao, G. Wang, L. Chen, P. X. Xu, Y. F. Zhao, Y. B. Zhou, L. B. Han, J. Am. Chem. Soc., 2009, 131, 7956.

    32. [32] Q. Sun, Z. F. Lv, Y. Y. Du, Q. M. Wu, L. Wang, L. F. Zhu, X. J. Meng, W. Z. Chen, F-S. Xiao, Chem. Asian J., 2013, 8, 2822.[32] Q. Sun, Z. F. Lv, Y. Y. Du, Q. M. Wu, L. Wang, L. F. Zhu, X. J. Meng, W. Z. Chen, F-S. Xiao, Chem. Asian J., 2013, 8, 2822.

    33. [33] J. P. Lecomte, A. Kirsch-De Mesmaeker, M. Demeunynck, J. Lhomme, J. Chem. Soc., Faraday Trans., 1993, 89, 3261.[33] J. P. Lecomte, A. Kirsch-De Mesmaeker, M. Demeunynck, J. Lhomme, J. Chem. Soc., Faraday Trans., 1993, 89, 3261.

    34. [34] W. H. Lin, W. L. Sun, J. Yang, Q. H. Sun, Z. Q. Shen, J. Phys. Chem. C, 2009, 113, 16884.[34] W. H. Lin, W. L. Sun, J. Yang, Q. H. Sun, Z. Q. Shen, J. Phys. Chem. C, 2009, 113, 16884.

    35. [35] M. B. Majewski, N. R. de Tacconi, F. M. MacDonnell, M. O. Wolf, Inorg. Chem., 2011, 50, 9939.[35] M. B. Majewski, N. R. de Tacconi, F. M. MacDonnell, M. O. Wolf, Inorg. Chem., 2011, 50, 9939.

    36. [36] X. Y. Liu, Y. L. Hu, B. Y. Wang, Z. X. Su, Synth. Metals, 2009, 159, 1557.[36] X. Y. Liu, Y. L. Hu, B. Y. Wang, Z. X. Su, Synth. Metals, 2009, 159, 1557.

    37. [37] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed., 2000, 39, 2632[37] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. Int. Ed., 2000, 39, 2632

    38. [38] A. Elangovan, Y. H. Wang, T. I. Ho, Org. Lett., 2003, 5, 1841.[38] A. Elangovan, Y. H. Wang, T. I. Ho, Org. Lett., 2003, 5, 1841.

    39. [39] S. Thorand, N. Krause, J. Org. Chem., 1998, 63, 8551.[39] S. Thorand, N. Krause, J. Org. Chem., 1998, 63, 8551.

    40. [40] F. J. Liu, L. Wang, Q. Sun, L. F. Zhu, X. J. Meng, F. S. Xiao, J. Am. Chem. Soc., 2012, 134, 16948.[40] F. J. Liu, L. Wang, Q. Sun, L. F. Zhu, X. J. Meng, F. S. Xiao, J. Am. Chem. Soc., 2012, 134, 16948.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1276
  • HTML全文浏览量:  152
文章相关
  • 收稿日期:  2015-05-20
  • 网络出版日期:  2015-06-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章