Citation: Amr El-Hag Ali, Ola M. Gomaa, Reham Fathey, Hussein Abd El Kareem, Mohamed Abou Zaid. Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production[J]. Journal of Fuel Chemistry and Technology, 2015, 43(9): 1092-1099.
Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production
English
Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production
-
-
-
[1] OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol 2004, 38: 4900-4904.[1] OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol 2004, 38: 4900-4904.
-
[2] ZHOU X, QU Y, KIM B H, ChOO P Y, LIU J, DU Y, HE W, CHANG I S, REN N, FEN N. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells[J]. Bioresour Technol, 2014, 169: 265-270.[2] ZHOU X, QU Y, KIM B H, ChOO P Y, LIU J, DU Y, HE W, CHANG I S, REN N, FEN N. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells[J]. Bioresour Technol, 2014, 169: 265-270.
-
[3] LAROSSA-GUERRERO A, SCOTT K, HEAD I M, MTEO F, GINTESA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.[3] LAROSSA-GUERRERO A, SCOTT K, HEAD I M, MTEO F, GINTESA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.
-
[4] FENG Y, WANG X, LOGAN B E, LEE H. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Appl Microbiol Biotechnol, 2008, 78: 873-880.[4] FENG Y, WANG X, LOGAN B E, LEE H. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Appl Microbiol Biotechnol, 2008, 78: 873-880.
-
[5] KIM B H, PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG NI. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biotechnol, 2004, 63(6): 672-681.[5] KIM B H, PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG NI. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biotechnol, 2004, 63(6): 672-681.
-
[6] PANT D, VAN B G, DIELS L, VANBROEKHOVEN K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresour Technol, 2010, 101: 1533-1543.[6] PANT D, VAN B G, DIELS L, VANBROEKHOVEN K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresour Technol, 2010, 101: 1533-1543.
-
[7] AHN Y, LOGAN B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresour Technol, 2010, 101: 469-475.[7] AHN Y, LOGAN B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresour Technol, 2010, 101: 469-475.
-
[8] BARANITHARAN E, KHAN M R, YOUSUF A, TEO W F A, TAN G Y A, CHENG C K. Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell[J]. Fuel, 2015, 143: 72-79.[8] BARANITHARAN E, KHAN M R, YOUSUF A, TEO W F A, TAN G Y A, CHENG C K. Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell[J]. Fuel, 2015, 143: 72-79.
-
[9] GREENMAN J, GALVEZ A, GIUSTI L, IEROPOULOS I. Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter[J]. Enzyme Microb Technol, 2009, 44(2): 112-119.[9] GREENMAN J, GALVEZ A, GIUSTI L, IEROPOULOS I. Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter[J]. Enzyme Microb Technol, 2009, 44(2): 112-119.
-
[10] ADELAJA O, KESHAVARZ T, KYAZZE G. Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell[J]. Eng Life Sci, 2014, 14(2): 218-228.[10] ADELAJA O, KESHAVARZ T, KYAZZE G. Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell[J]. Eng Life Sci, 2014, 14(2): 218-228.
-
[11] El-HAG ALI A, ABD El-AAl A. Conductive thin film formation onto radiation grafted polymeric surfaces using electroless plating technique[J]. Polym Adv Technol, 2009, 20(9): 729-735.[11] El-HAG ALI A, ABD El-AAl A. Conductive thin film formation onto radiation grafted polymeric surfaces using electroless plating technique[J]. Polym Adv Technol, 2009, 20(9): 729-735.
-
[12] El-HAG ALI A, MOSTAFA T B, RAAFAT A I. Chemical modification-induced improvement in the electrical characteristics of radiation-functionalized polypropylene sheets[J]. Polym Int, 2010, 59(4): 557-5561.[12] El-HAG ALI A, MOSTAFA T B, RAAFAT A I. Chemical modification-induced improvement in the electrical characteristics of radiation-functionalized polypropylene sheets[J]. Polym Int, 2010, 59(4): 557-5561.
-
[13] ZHONG S L, CUI X J, GAO Y S, LIU W C, DOU S. Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications[J]. Int J Hydrogn Energy, 2014, 39(31): 17857-17864.[13] ZHONG S L, CUI X J, GAO Y S, LIU W C, DOU S. Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications[J]. Int J Hydrogn Energy, 2014, 39(31): 17857-17864.
-
[14] ZHANG Z X, CHATTOT R, BONORAND L, JETSRISUPARB K, BUCHMULLER Y, WOKAUN A, GUBLER L. Mass spectrometry to quantify and compare the gas barrier properties of radiation grafted membranes and nafion[J]. J Memb Sci, 2014, 472: 55-66.[14] ZHANG Z X, CHATTOT R, BONORAND L, JETSRISUPARB K, BUCHMULLER Y, WOKAUN A, GUBLER L. Mass spectrometry to quantify and compare the gas barrier properties of radiation grafted membranes and nafion[J]. J Memb Sci, 2014, 472: 55-66.
-
[15] LIN Y, HO H. Investigations on the drug releasing mechanism from an asymmetric membrane-coated capsule with an in situ formed delivery orifice[J]. J Control Rel, 2003, 89(1): 57-69.[15] LIN Y, HO H. Investigations on the drug releasing mechanism from an asymmetric membrane-coated capsule with an in situ formed delivery orifice[J]. J Control Rel, 2003, 89(1): 57-69.
-
[16] [JP5]YOUNG J C, BAUMANN E R. The electrolytic respirometer—II Use in water pollution control plant laboratories[J]. Water Res, 1976, 10(12): 1141-1149.[16] [JP5]YOUNG J C, BAUMANN E R. The electrolytic respirometer—II Use in water pollution control plant laboratories[J]. Water Res, 1976, 10(12): 1141-1149.
-
[17] Materials ASfTa. Annual Book of Standards. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water[M]. Philadephia, Pa.1995.[17] Materials ASfTa. Annual Book of Standards. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water[M]. Philadephia, Pa.1995.
-
[18] EATON A D, LS C, AE G. Standard methods for the examination of water and wastewater. In: American Public Health Association AWA, editor. 19th edition ed: Water Environment Federation[M]. 2005.[18] EATON A D, LS C, AE G. Standard methods for the examination of water and wastewater. In: American Public Health Association AWA, editor. 19th edition ed: Water Environment Federation[M]. 2005.
-
[19] American Water Works Association WEF. APHA. Standard Methods for the Examination of Water and Wastewater[M]. 1999.[19] American Water Works Association WEF. APHA. Standard Methods for the Examination of Water and Wastewater[M]. 1999.
-
[20] [JP3]ALONSO-FAGUNDEZ N, LASERNA V, ALBA-RUBIO AC, MENGIBAR M, HERAS A, MARISCAL R, LOPEZ GRANDOS M. Poly-(styrene sulphonic acid): An acid catalyst from polystyrene waste for reactions of interest in biomass valorization[J]. Catal Today, 2014, 234: 285-294.[20] [JP3]ALONSO-FAGUNDEZ N, LASERNA V, ALBA-RUBIO AC, MENGIBAR M, HERAS A, MARISCAL R, LOPEZ GRANDOS M. Poly-(styrene sulphonic acid): An acid catalyst from polystyrene waste for reactions of interest in biomass valorization[J]. Catal Today, 2014, 234: 285-294.
-
[21] ABD EL-REHIM H A, HEGAZY E A, EL-HAG ALI A. Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes[J]. React Func Polym, 2000, 43(1/2): 105-116.[21] ABD EL-REHIM H A, HEGAZY E A, EL-HAG ALI A. Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes[J]. React Func Polym, 2000, 43(1/2): 105-116.
-
[22] LIU G, YATES M D, CHENG S, CALL D F, SUN D, LOGAN B E. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresour Technol, 2011, 102(15): 7301-7306.[22] LIU G, YATES M D, CHENG S, CALL D F, SUN D, LOGAN B E. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresour Technol, 2011, 102(15): 7301-7306.
-
[23] [JP3]RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, 23(6): 291-298.[23] [JP3]RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, 23(6): 291-298.
-
[24] IEROPOULOS I A, GREENMAN J, MELHUISH C, HART J. Comparative study of three types of microbial fuel cell[J]. Enzyme Microb Technol, 2005, 37(2): 238-245.[24] IEROPOULOS I A, GREENMAN J, MELHUISH C, HART J. Comparative study of three types of microbial fuel cell[J]. Enzyme Microb Technol, 2005, 37(2): 238-245.
-
[25] RAGHAVULU S V, MOHAN S V, GOUD R K, SARMA P N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes[J]. Electrochem Comm, 2009, 11(2): 371-375.[25] RAGHAVULU S V, MOHAN S V, GOUD R K, SARMA P N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes[J]. Electrochem Comm, 2009, 11(2): 371-375.
-
[26] TSUCHIYA M F. Ion transport in prokaryotes[B]. San Diego: Academic Press, Inc.; 1987.[26] TSUCHIYA M F. Ion transport in prokaryotes[B]. San Diego: Academic Press, Inc.; 1987.
-
[27] WEI L, HAN H, SHEN J. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. Int J Hydrogen Energy, 2012, 37(17): 12980-12986.[27] WEI L, HAN H, SHEN J. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. Int J Hydrogen Energy, 2012, 37(17): 12980-12986.
-
[28] RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 2004, 70(9): 5373-82.[28] RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 2004, 70(9): 5373-82.
-
[29] LUO H, LIU G, ZHANG R, JIN S. Phenol degradation in microbial fuel cells[J]. Chem Eng J, 2009, 147(2/3): 259-264.[29] LUO H, LIU G, ZHANG R, JIN S. Phenol degradation in microbial fuel cells[J]. Chem Eng J, 2009, 147(2/3): 259-264.
-
[30] LOGAN B E, MURANO C, SCOTT K, GRAY N D, HEAD I M. Electricity generation from cysteine in a microbial fuel cell[J]. Water Res, 2005, 39(5): 942-52.[30] LOGAN B E, MURANO C, SCOTT K, GRAY N D, HEAD I M. Electricity generation from cysteine in a microbial fuel cell[J]. Water Res, 2005, 39(5): 942-52.
-
[31] XIAO B, YANG F, LIU J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell[J]. J Hazard Mater, 2013, 254-255: 57-63.[31] XIAO B, YANG F, LIU J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell[J]. J Hazard Mater, 2013, 254-255: 57-63.
-
[32] YOU S, ZHAO Q, ZHANG J, JIANG J, ZHAO S. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. J Power Sources, 2006, 162(2): 1409-1415.[32] YOU S, ZHAO Q, ZHANG J, JIANG J, ZHAO S. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. J Power Sources, 2006, 162(2): 1409-1415.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 393
- HTML全文浏览量: 26

下载: