超临界水中煤基多孔炭孔隙形成过程的研究

周娴娴 曲旋 张荣 毕继诚

引用本文: 周娴娴, 曲旋, 张荣, 毕继诚. 超临界水中煤基多孔炭孔隙形成过程的研究[J]. 燃料化学学报, 2015, 43(9): 1025-1031. shu
Citation:  ZHOU Xian-xian, QU Xuan, ZHANG Rong, BI Ji-cheng. Pore evolution of coal based porous carbon in supercritical water[J]. Journal of Fuel Chemistry and Technology, 2015, 43(9): 1025-1031. shu

超临界水中煤基多孔炭孔隙形成过程的研究

    通讯作者: 毕继诚,E-mail:bijc@sxicc.ac.cn。
  • 基金项目:

    国家高技术研究发展计划(863计划, 2011AA05A201)。 (863计划, 2011AA05A201)

摘要: 在半连续超临界水反应器(SCWR)中考察了不同温度、反应时间下昭通褐煤的转化特性,结合半焦有机官能团及碳微晶结构分析,推测在超临界水中半焦孔隙的形成过程以及煤中矿物质的作用。结果表明,超临界水首先快速萃取出褐煤热解产物,促进了半焦石墨化,形成良好的炭素前驱体,此过程对半焦孔结构基本无作用;当温度高于550 ℃,炭素前驱体发生气化反应,产生了较多的C-O-C交联结构,比表面积明显提高,逐渐形成多孔炭材料;脱灰后的煤在升温过程中具有更高的萃取率,形成有利于微孔产生的炭素前驱体,煤中的矿物质更有利于中孔的形成。

English

  • 
    1. [1] 姜克隽, 胡秀莲, 庄幸, 刘强, 朱松丽. 中国2050年的能源需求与CO2排放情景[J]. 气候变化研究进展, 2008, 4(5): 296-302. (JIANG Ke-jun, HU Xiu-lian, ZHUANG Xing, LIU Qiang, ZHU Song-li. China's Energy demand and greenhouse gas emission scenarios in 2050[J]. Adv Clim Change Res, 2008, 4(5): 296-302.)[1] 姜克隽, 胡秀莲, 庄幸, 刘强, 朱松丽. 中国2050年的能源需求与CO2排放情景[J]. 气候变化研究进展, 2008, 4(5): 296-302. (JIANG Ke-jun, HU Xiu-lian, ZHUANG Xing, LIU Qiang, ZHU Song-li. China's Energy demand and greenhouse gas emission scenarios in 2050[J]. Adv Clim Change Res, 2008, 4(5): 296-302.)

    2. [2] WANG J, TAKARADA T. Characterization of high-temperature coal tar and supercritical-water extracts of coal by laser desorption ionization-mass spectrometry[J]. Fuel Process Technol, 2003, 81(3): 247-258.[2] WANG J, TAKARADA T. Characterization of high-temperature coal tar and supercritical-water extracts of coal by laser desorption ionization-mass spectrometry[J]. Fuel Process Technol, 2003, 81(3): 247-258.

    3. [3] 王知彩, 李良, 水恒福, 雷智平, 任世彪, 康士刚, 潘春秀. 先锋褐煤热溶及热溶物红外光谱表征[J]. 燃料化学学报, 2011, 39(6): 401-406. (WANG Zhi-cai, LI Liang, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, PAN Chun-xiu. High temperature thermal extraction of xianfeng lignite and FT-IR characterization of its extracts and residues [J]. J Fuel Chem Technol, 2011, 39(6): 401-406.)[3] 王知彩, 李良, 水恒福, 雷智平, 任世彪, 康士刚, 潘春秀. 先锋褐煤热溶及热溶物红外光谱表征[J]. 燃料化学学报, 2011, 39(6): 401-406. (WANG Zhi-cai, LI Liang, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, PAN Chun-xiu. High temperature thermal extraction of xianfeng lignite and FT-IR characterization of its extracts and residues [J]. J Fuel Chem Technol, 2011, 39(6): 401-406.)

    4. [4] KWANRUTHAI O, PATTARAPAN P, SOMKIAT N. Co-liquefaction of coal and used tire in supercritical water[J]. Energy Power Eng, 2010, 2(2): 95-102.[4] KWANRUTHAI O, PATTARAPAN P, SOMKIAT N. Co-liquefaction of coal and used tire in supercritical water[J]. Energy Power Eng, 2010, 2(2): 95-102.

    5. [5] SISKIN M, KATRITZKYA R. Reactivity of organic compounds in superheated water: General background[J]. Chem Rev, 2001, 101(4): 825-836.[5] SISKIN M, KATRITZKYA R. Reactivity of organic compounds in superheated water: General background[J]. Chem Rev, 2001, 101(4): 825-836.

    6. [6] CONNOLLY J F. Solubility of hydrocarbons in water near the critical solution temperatures[J]. J Chem Eng Data, 1966, 11(1): 13-16.[6] CONNOLLY J F. Solubility of hydrocarbons in water near the critical solution temperatures[J]. J Chem Eng Data, 1966, 11(1): 13-16.

    7. [7] OKITSUGU K. Solvation in supercritical fluids: Its effects on energy transfer and chemical reactions[J]. Chem Rev, 1999, 99(2): 355-390.[7] OKITSUGU K. Solvation in supercritical fluids: Its effects on energy transfer and chemical reactions[J]. Chem Rev, 1999, 99(2): 355-390.

    8. [8] SHIN H Y, MATSUMOTO K, HIGASHI H, IWAI Y, ARAI Y. Development of a solution model to correlate solubilities of inorganic compounds in water vapor under high temperatures and pressures[J]. J Supercrit Fluids, 2001, 21(2): 105-110.[8] SHIN H Y, MATSUMOTO K, HIGASHI H, IWAI Y, ARAI Y. Development of a solution model to correlate solubilities of inorganic compounds in water vapor under high temperatures and pressures[J]. J Supercrit Fluids, 2001, 21(2): 105-110.

    9. [9] DESHPANDE G V, HOLDER G D, BISHOP A A,GOPAL J, WENDER I. Extraction of coal using supercritical water[J]. Fuel, 1984, 63(7): 956-960.[9] DESHPANDE G V, HOLDER G D, BISHOP A A,GOPAL J, WENDER I. Extraction of coal using supercritical water[J]. Fuel, 1984, 63(7): 956-960.

    10. [10] WU B, HU H Q, ZHAO Y P, JIN L J, FANG Y M. XPS analysis and combustibility of residues from two coals extraction with sub- and supercritical water[J]. J Fuel Chem Technol, 2009, 37(4): 385-392.[10] WU B, HU H Q, ZHAO Y P, JIN L J, FANG Y M. XPS analysis and combustibility of residues from two coals extraction with sub- and supercritical water[J]. J Fuel Chem Technol, 2009, 37(4): 385-392.

    11. [11] WU B, HU H Q, HUANG S P, FANG Y M, LI X, MENG M. Extraction of weakly reductive and reductive coals with sub- and supercritical water[J]. Energy Fuels, 2008, 22(6): 3944-3948.[11] WU B, HU H Q, HUANG S P, FANG Y M, LI X, MENG M. Extraction of weakly reductive and reductive coals with sub- and supercritical water[J]. Energy Fuels, 2008, 22(6): 3944-3948.

    12. [12] MIGUREL MS, M. JESËS S M, JUAN M J G, FRANCISCO S, FRANCISCO R-R, AURELIO S. Development of porosity in a char during reaction with steam or supercritical water[J]. J Chem Phys, 2006, 110(25): 12360-12364.[12] MIGUREL MS, M. JESËS S M, JUAN M J G, FRANCISCO S, FRANCISCO R-R, AURELIO S. Development of porosity in a char during reaction with steam or supercritical water[J]. J Chem Phys, 2006, 110(25): 12360-12364.

    13. [13] FRANCISCO S, M. JESËS S M, IZQUIERDO C. C/H2O reaction under supercritical conditions and their repercussions in the preparation of activated carbon[J]. J Chem Phys, 2007, 111(37): 14011-14020.[13] FRANCISCO S, M. JESËS S M, IZQUIERDO C. C/H2O reaction under supercritical conditions and their repercussions in the preparation of activated carbon[J]. J Chem Phys, 2007, 111(37): 14011-14020.

    14. [14] FRANCISCO S, M. JESËS S M, JESSICA M, IZQUIERDO C. Activated carbon fibers prepared from a phenolic fiber by supercritical water and steam activation[J]. J Phys Chem C, 2008, 112(50): 20057-20064.[14] FRANCISCO S, M. JESËS S M, JESSICA M, IZQUIERDO C. Activated carbon fibers prepared from a phenolic fiber by supercritical water and steam activation[J]. J Phys Chem C, 2008, 112(50): 20057-20064.

    15. [15] MONTANÉ D, FIERRO V, MARÊCHÉ J F, ARANDA L, CELZARD A. Activation of biomass-derived charcoal with supercritical water[J]. Microporous Mesoporous Mater, 2009, 119(1/3): 53-59.[15] MONTANÉ D, FIERRO V, MARÊCHÉ J F, ARANDA L, CELZARD A. Activation of biomass-derived charcoal with supercritical water[J]. Microporous Mesoporous Mater, 2009, 119(1/3): 53-59.

    16. [16] CAI Q, HUANG Z H, KANG F Y, YANG J B. Preparation of activated carbon microspheres from phenolic-resin by supercritical water activation[J]. Carbon, 2004, 42(4): 775-783.[16] CAI Q, HUANG Z H, KANG F Y, YANG J B. Preparation of activated carbon microspheres from phenolic-resin by supercritical water activation[J]. Carbon, 2004, 42(4): 775-783.

    17. [17] 蔡琼, 黄正宏, 康飞宇. 采用超临界水活化与水蒸气活化工艺由果壳制备活性炭的对比研究 [C]//第六届全国新型炭材料研讨会论文集, 北京, 万方数据电子出版社, 2003: 117-123. (CAI Qiong, HUANG Zheng-hong, KANG Fei-yu. Comparison of activated carbons prepared from nutshells by means of supercritical water activation and steam activation processes [C]//The sixth national symposium on new carbon materials, Beijing, Wanfang Data electronic press, 2003: 117-123.)[17] 蔡琼, 黄正宏, 康飞宇. 采用超临界水活化与水蒸气活化工艺由果壳制备活性炭的对比研究 [C]//第六届全国新型炭材料研讨会论文集, 北京, 万方数据电子出版社, 2003: 117-123. (CAI Qiong, HUANG Zheng-hong, KANG Fei-yu. Comparison of activated carbons prepared from nutshells by means of supercritical water activation and steam activation processes [C]//The sixth national symposium on new carbon materials, Beijing, Wanfang Data electronic press, 2003: 117-123.)

    18. [18] 蔡琼, 黄正宏, 康飞宇. 超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J]. 新型炭材料, 2005, 20(2): 122-127. (CAI Qiong, HUANG Zheng-hong, KANG Fei-yu.A comparative study of phenolic resin-based activated carbons by means of supercritical water activation and steam activation[J]. New Carbon Mater, 2005, 20(2): 122-127.)[18] 蔡琼, 黄正宏, 康飞宇. 超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J]. 新型炭材料, 2005, 20(2): 122-127. (CAI Qiong, HUANG Zheng-hong, KANG Fei-yu.A comparative study of phenolic resin-based activated carbons by means of supercritical water activation and steam activation[J]. New Carbon Mater, 2005, 20(2): 122-127.)

    19. [19] SAMARAS P, DIAMADOPOULOS E, SAKELLAROPOULOS G P. The effect of demineralization on lignite activation[J]. Carbon, 1991, 29(8): 1181-1190.[19] SAMARAS P, DIAMADOPOULOS E, SAKELLAROPOULOS G P. The effect of demineralization on lignite activation[J]. Carbon, 1991, 29(8): 1181-1190.

    20. [20] ZHOU X X, QU X, ZHANG R, BI J C. Study of the microtextural transformation of coal char during supercritical water activation[J]. Fuel Process Technol, 2015, 135: 195-202.[20] ZHOU X X, QU X, ZHANG R, BI J C. Study of the microtextural transformation of coal char during supercritical water activation[J]. Fuel Process Technol, 2015, 135: 195-202.

    21. [21] MATSUMURA Y, XU X, JR MJA. Gasification characteristics of an activated carbon in supercritical water[J]. Carbon, 1997, 35(6): 819-824.[21] MATSUMURA Y, XU X, JR MJA. Gasification characteristics of an activated carbon in supercritical water[J]. Carbon, 1997, 35(6): 819-824.

    22. [22] NAL Y, CEYLAN K. Effects of treatments on the mineral matter and acidic functional group contents of Turkish lignites[J]. Fuel, 1995, 74(7): 972-977.[22] NAL Y, CEYLAN K. Effects of treatments on the mineral matter and acidic functional group contents of Turkish lignites[J]. Fuel, 1995, 74(7): 972-977.

    23. [23] KEOWN D M, LI X J, HAYASHI J I, LI C Z. Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy[J]. Fuel Process Technol, 2008, 89(12): 1429-1435.[23] KEOWN D M, LI X J, HAYASHI J I, LI C Z. Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy[J]. Fuel Process Technol, 2008, 89(12): 1429-1435.

    24. [24] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.[24] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

    25. [25] LI X J, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1517.[25] LI X J, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1517.

    26. [26] LAHAYE J, EHRBURGER P. Fundamental issues in control of carbon gasification reactivity[M]. Springer Science Business Media, 1991, 533-571.[26] LAHAYE J, EHRBURGER P. Fundamental issues in control of carbon gasification reactivity[M]. Springer Science Business Media, 1991, 533-571.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  507
  • HTML全文浏览量:  66
文章相关
  • 收稿日期:  2015-05-19
  • 网络出版日期:  2015-07-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章