无酶催化发夹自组装用于动力学竞争适配体传感策略灵敏检测蓖麻毒素

齐丽娟 杨媚婷 杜衍

引用本文: 齐丽娟, 杨媚婷, 杜衍. 无酶催化发夹自组装用于动力学竞争适配体传感策略灵敏检测蓖麻毒素[J]. 分析化学, 2021, 49(6): 1025-1034. doi: 10.19756/j.issn.0253-3820.211053 shu
Citation:  QI Li-Juan,  YANG Mei-Ting,  DU Yan. Enzyme-Free Catalytic Hairpin Assembly Utilized in A Kinetically Competitive Aptasensor for Sensitive Detection of Ricin Toxin A Chain[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 1025-1034. doi: 10.19756/j.issn.0253-3820.211053 shu

无酶催化发夹自组装用于动力学竞争适配体传感策略灵敏检测蓖麻毒素

    通讯作者: 杨媚婷,E-mail:duyan@ciac.ac.cn; 杜衍,E-mail:mtyang@ciac.ac.cn
  • 基金项目:

    国家自然科学基金项目(Nos.21874129,31960506)和吉林省科技厅国际科技合作项目(No.20200801044GH)资助。

摘要: 构建了一种新型的基于动力学竞争的适配体传感策略,通过无酶催化发夹自组装(CHA)反应进行信号放大和输出,实现了蓖麻毒素A链(RTA)的选择性灵敏检测。阻碍链(Blocker)能够分别与适配体(RA80)和发夹探针(HP1)竞争结合,而优先与RA80结合的RTA会影响RA80和HP1对Blocker的竞争反应,使更多的Blocker与HP1杂交。随后,与HP1结合的Blocker可通过HP1上修饰的生物素与磁珠表面链霉亲和素的共价键和作用,经过磁性作用分离出来,继而作为CHA的催化链,催化CHA产生荧光信号。随着RTA浓度增大,分离出的CHA催化链浓度增加,荧光信号增强,基于此可以建立输出荧光信号与RTA浓度的关系。为降低背景信号,在CHA中引入错配碱基对,通过减少呼吸作用或自身变构引起的非催化反应,有效改善了检测信号。本传感器对RTA的检出限为0.88 nmol/L,与文献报道的对蓖麻毒素的检出限相当,在食品(包括蔗糖、小苏打和面粉等)中RTA的回收率为91.2%~107.9%。本检测方法拓展了适配体识别机制,有效解决了基于平衡的传统互补链替换法中针对长链适配体设计阻碍链的难题,竞争元素设计简便,不需要冗长的平衡过程和适配体的修饰,为序列冗长、结构复杂的RNA适配体的应用奠定了基础。

English


    1. [1]

      DU Y, DONG S. Anal. Chem., 2017, 89(1): 189-215.

    2. [2]

      FEAGIN T A, MAGANZINI N, SOH H T. ACS Sens., 2018, 3(9): 1611-1615.

    3. [3]

      STOJANOVIC M N, PRADA P D, LANDRY D W. J. Am. Chem. Soc., 2001, 123: 4928-4931.

    4. [4]

      HEYDUK E, HEYDUK T. Anal. Chem., 2005, 77: 1147-1156.

    5. [5]

      STOJANOVIC M N, PRADA P D, LANDRY D W. J. Am. Chem. Soc., 2000, 122: 11547-11548.

    6. [6]

      LAU P S, COOMBES B K, LI Y. Angew. Chem., Int. Ed., 2010, 49(43): 7938-7942.

    7. [7]

      DU Y, ZHEN S J, LI B, BYROM M, JIANG Y S, ELLINGTON A D. Anal. Chem., 2016, 88(4): 2250-2257.

    8. [8]

      CHEN Y X, HUANG K J, HE L L, WANG Y H. Biosens. Bioelectron., 2018, 100: 274-281.

    9. [9]

      KOTLAREK D, VOROBII M, OGIEGLO W O, KNOLL W, RODRIGUEZ-EMMENEGGER C, DOSTALEK J. ACS Sens., 2019, 4(8): 2109-2116.

    10. [10]

      ZHANG R, SUN J, JI J, PI F, XIAO Y, ZHANG Y, SUN X. Sens. Actuators, B, 2019, 282: 910-916.

    11. [11]

      WEI B, ZHANG J, QU X, LOU X, XIA F, VALLEE-BELISLE A. Anal. Chem., 2018, 90(3): 1506-1510.

    12. [12]

      GAO H, ZHAO J, HUANG Y, CHENG X, WANG S, HAN Y, XIAO Y, LOU X. Anal. Chem., 2019, 91(22): 14514-14521.

    13. [13]

      DEORE P S, GRAY M D, CHUNG A J, MANDERVILL R A. J. Am. Chem. Soc., 2019, 141(36): 14288-14297.

    14. [14]

      HESSELBERTH J R, MILLER D, ROBERTUS J, ELLINGTON A D. J. Biol. Chem., 2000, 275(7): 4937-4942.

    15. [15]

      KIRBY R, CHO E J, GEHRKE B, BAYER T, PARK Y S, NEIKIRK D P, MCDEVITT J T, ELLINGTON A D. Anal. Chem., 2004, 76: 4066-4075.

    16. [16]

      LI N N, HONG H, BYROM M, ELLINGTON A D. PLoS One, 2011, 6(6): e20299.

    17. [17]

      WANG Y, KHAING Z Z, LI N, HALL B, SCHMIDT C E, ELLINGTON A D. PLoS One, 2010, 5(3): e9726.

    18. [18]

      AGRAWAL N K, ALLEN P, SONG Y H, WACHS R A, DU Y, ELLINGTON A D, SCHMIDT C E. Acta Biomater., 2020, 102: 315-325.

    19. [19]

      LI B, JIANG Y, CHEN X, ELLINGTON A D. J. Am. Chem. Soc., 2012, 134(34): 13918-13921.

    20. [20]

      LI B, ELLINGTON A D, CHEN X. Nucleic Acids Res., 2011, 39(16): e110.

    21. [21]

      JIANG Y, LI B, MILLIGAN J N, BHADRA S, ELLINGTON A D. J. Am. Chem. Soc., 2013, 135(20): 7430-7433.

    22. [22]

      JIANG Y S, BHADRA S, LI B, ELLINGTON A D. Angew. Chem., Int. Ed., 2014, 53(7): 1845-1848.

    23. [23]

      HELLER N C, GARRETT A M, MERKLEY E D, CENDROWSKI S R, MELVILLE A M, ARCE J S, JENSON S C, WAHL K L, JARMAN K H. Anal. Chem., 2019, 91(19): 12399-12406.

    24. [24]

      SUN J, ZHANG X, LI T, XIE J, SHAO B, XUE D, TANG X, LI H, LIU Y. Anal. Chem., 2019, 91(10): 6454-6461.

    25. [25]

      QI L, HAN X, DU Y. Sens. Actuators, B, 2020, 314: 128073.

    26. [26]

      CHO E J, COLLETT J R, SZAFRANSKA A E, ELLINGTON A D. Anal. Chim. Acta, 2006, 564(1): 82-90.

    27. [27]

      DING S, GAO C, GU L Q. Anal. Chem., 2009, 81: 6649-6655.

    28. [28]

      LAMONT E A, HE L, WARRINER K, LABUZA T P, SREEVATSAN S. Analyst, 2011, 136(19): 3884-3895.

    29. [29]

      SZLAG V M, STYLES M J, MADISON L R, CAMPOS A R, WAGH B, SPROUSE D, SCHATZ G C, REINEKE T M, HAYNES C L. ACS Sens., 2016, 1(7): 842-846.

    30. [30]

      XIAO X, TAO J, ZHANG H Z, HUANG C Z, ZHEN S J. Biosens. Bioelectron., 2016, 85: 822-827.

    31. [31]

      SUN J, WANG C, SHAO B, WANG Z, XUE D, LIU Y, QI K, YANG Y, NIU Y. Anal. Chem., 2017, 89(22): 12209-12216.

    32. [32]

      MU X H, LIU H F, TONG Z Y, DU B, LIU S, LIU B, LIU Z W, GAO C, WANG J, DONG H. Sens. Actuators, B, 2019, 284: 638-649.

    33. [33]

      YANG J, ZHANG Z, PANG W, CHEN H, YAN G. Sens. Actuators, B, 2019, 301: 127014.

  • 加载中
计量
  • PDF下载量:  25
  • 文章访问数:  1831
  • HTML全文浏览量:  460
文章相关
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-04-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章