Citation: Jiaqi Wang, Qingrong Qian, Qinghua Chen, Xin-Ping Liu, Yongjin Luo, Hun Xue, Zhaohui Li. Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways[J]. Chinese Journal of Catalysis, 2020, 41(10): 1511-1521. doi: S1872-2067(19)63525-4
·CO3-在基于太阳光驱动的TiO2-贝壳粉降解盐酸四环素中的作用:降解机理和转化路径
贝壳中含有95%以上的碳酸钙,由于其具有低成本、生态友好、无毒性等特点而越来越受到人们的关注.贝壳与TiO2复合,利用贝壳在水相中提供的CO32-/HCO3-与TiO2在光照下产生的·OH,·O2-及h+等活性物种反应生成·CO3-促进光催化反应速率的提高,对盐酸四环素的有效去除具有显著意义.
本文通过溶胶-凝胶法合成TiO2-贝壳粉,采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、红外光谱和氮气吸附-脱附测试等技术对所得样品进行了表征.考察了TiO2-贝壳粉在模拟太阳光下对盐酸四环素的降解性能.结果表明,在模拟太阳光的作用下,40% TS-300在30min内能降解94.0%的盐酸四环素,优于纯TiO2的降解效率(88.6%).通过自由基捕获实验比较了TiO2和TiO2-贝壳粉体系降解盐酸四环素机理的差异,在TiO2光催化降解盐酸四环素体系中,·O2-和h+是主要活性物种.而在TiO2-贝壳粉体系中,TiO2在光照条件下产生的·OH,·O2-及h+通过与贝壳粉在水相中提供的CO32-/HCO3-进一步产生·CO3-,·CO3-、·O2-和h+协同作用实现盐酸四环素的有效降解.采用HRESI-TOF-MS研究了40% TS-300光降解盐酸四环素的中间转化产物,提出TiO2-贝壳粉光降解盐酸四环素可能的降解路径.对40% TS-300样品进行了光降解盐酸四环素长效循环测试,结果表明该样品能够保持稳定有效的降解盐酸四环素性能,此为该材料今后的潜在应用奠定了可靠基础.
English
Significant role of carbonate radicals in tetracycline hydrochloride degradation based on solar light-driven TiO2-seashell composites: Removal and transformation pathways
-
Key words:
- TiO2-seashell
- / Carbonate radical
- / Photochemistry
- / Tetracycline hydrochloride
- / Mechanism
-
-
[1] Y. Nosaka, A. Y. Nosaka, Chem. Rev., 2017, 117, 11302-11336.
-
[2] L. Zheng, X. Yu, M. Long, Q. Li, Chin. J. Catal., 2017, 38, 2076-2084.
-
[3] X. Li, J. Xie, C. Jiang, J. Yu, P. Zhang, Front. Environ. Sci. Eng., 2018, 12, 1-32.
-
[4] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179.
-
[5] F. Wu, X. Li, W. Liu, S. Zhang, Appl. Surf. Sci., 2017, 405, 60-70.
-
[6] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955.
-
[7] L. Liang, K. Li, K. Lv, W. Ho, Y. Duan, Chin. J. Catal., 2017, 38, 2085-2093.
-
[8] S. Canonica, T. Kohn, M. Mac, F. J. Real, J. Wirz, U. Von Gunten, Environ. Sci. Technol., 2005, 39, 9182-9188.
-
[9] T. Liu, K. Yin, C. Liu, J. Luo, J. Crittenden, W. Zhang, S. Luo, Q. He, Y. Deng, H. Liu, D. Zhang, Water Res., 2018, 147, 204-213.
-
[10] F. J. Millero, Geochim. Cosmochim. Acta, 1987, 51, 351-353.
-
[11] D. Vione, S. Khanra, S. C. Man, P. R. Maddigapu, R. Das, C. Arsene, R. I. Olariu, V. Maurino, C. Minero, Water Res., 2009, 43, 4718-4728.
-
[12] W. R. Haag, J. Hoigné, Chemosphere, 1985, 14, 1659-1671.
-
[13] M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, Chem. Eng. J., 2016, 284, 582-598.
-
[14] Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta Kassinos, D. D. Dionysiou, Water Res., 2016, 95, 195-204.
-
[15] J. Huang, S. A. Mabury, Environ. Toxicol. Chem., 2000, 19, 2181-2188.
-
[16] Z. Ruochun, S. Peizhe, T.H. Boyer, Z. Lin, H. Ching Hua, Environ. Sci. Technol., 2015, 49, 3056-3066.
-
[17] W. W. P. Lai, M. H. Hsu, A. Y. C. Lin, Water Res., 2017, 112, 157-166.
-
[18] Y. Li, L. Li, Z. X. Chen, J. Zhang, L. Gong, Y. X. Wang, H. Q. Zhao, Y. Mu, Chemosphere, 2018, 192, 372-378.
-
[19] G. Wang, Q. Zhang, Q. Chen, X. Ma, Y. Xin, X. Zhu, D. Ma, C. Cui, J. Zhang, Z. Xiao, Chem. Eng. J., 2019, 358, 1083-1090.
-
[20] M. Xu, X. Gu, S. Lu, Z. Qiu, Q. Sui, Z. Miao, X. Zang, X. Wu, J. Hazard. Mater., 2015, 286, 7-14.
-
[21] C. Busset, P. Mazellier, M. Sarakha, J. De Laat, J. Photochem. Photobiol. A, 2007, 185, 127-132.
-
[22] R. A. Larson, R. G. Zepp, Environ. Toxicol. Chem., 1987, 7, 265-274.
-
[23] J. Huang, S. A. Mabury, Environ. Toxicol. Chem., 2000, 19, 1501-1507.
-
[24] J. M. Burns, W. J. Cooper, J. L. Ferry, D. W. King, B. P. DiMento, K. McNeill, C. J. Miller, W. L. Miller, B. M. Peake, S. A. Rusak, A. L. Rose, T. D. Waite, Aquat. Sci., 2012, 74, 683-734.
-
[25] C. Luo, J. Gao, D. Wu, J. Jiang, Y. Liu, W. Zhou, J. Ma, Chem. Eng. J., 2019, 358, 1342-1350.
-
[26] J. Yang, Z. Dong, C. Jiang, H. Liu, J. Li, J. Hazard. Mater., 2019, 363, 428-438.
-
[27] B. Bhushan, Y. C. Jung, Prog. Mater. Sci., 2011, 56, 1-108.
-
[28] R. M. Erb, R. Libanori, N. Rothfuchs, A. R. Studart, Science, 2012, 335, 199-204.
-
[29] H. Jiale, L. Liqin, S. Daohua, C. Huimei, Y. Dapeng, L. Qingbiao, Chem. Soc. Rev., 2015, 44, 6330-6374.
-
[30] S. L. Zhong, J. Zhuang, D. P. Yang, D. Tang, Biosens. Bioelectron., 2017, 96, 26-32.
-
[31] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.
-
[32] N. F. F. Moreira, C. Narciso da Rocha, M. Inmaculada Polo Lopez, L. M. Pastrana Martinez, J. L. Faria, C. M. Manaia, P. Fernandez Ibanez, O. C. Nunes, A. M. T. Silva, Water Res., 2018, 135, 195-206.
-
[33] J. Shen, R. Wang, Q. Liu, X. Yang, H. Tang, J. Yang, Chin. J. Catal., 2019, 40, 380-389.
-
[34] X. Li, J. Xiong, Y. Xu, Z. Feng, J. Huang, Chin. J. Catal., 2019, 40, 424-433.
-
[35] L. Hu, J. Yan, C. Wang, B. Chai, J. Li, Chin. J. Catal., 2019, 40, 458-469.
-
[36] G. Zhang, X. He, M. N. Nadagouda, K. E. O'Shea, D. D. Dionysiou, Water Res., 2015, 73, 353-361.
-
[37] H. Wang, N. Wang, B. Wang, H. Fang, C. Fu, C. Tang, F. Jiang, Y. Zhou, G. He, Q. Zhao, Y. Chen, Q. Jiang, Environ. Int., 2016, 89-90, 204-211.
-
[38] X. Fu, W. A. Zeltner, Q. Yang, M. A. Anderson, J. Catal., 1997, 168, 482-490.
-
[39] Y. Li, K. Lv, W. Ho, F. Dong, X. Wu, Y. Xia, Appl. Catal. B, 2017, 202, 611-619.
-
[40] T. Phongamwong, W. Donphai, P. Prasitchoke, C. Rameshan, N. Barrabeis, W. Klysubun, G. Rupprechter, M. Chareonpanich, Appl. Catal. B, 2017, 207, 326-334.
-
[41] Z. A. Huang, Q. Sun, K. Lv, Z. Zhang, L. Mei, L. Bing, Appl. Catal. B, 2015, 164, 420-427.
-
[42] H. Xue, Y. Chen, X. Liu, Q. Qian, Y. Luo, M. Cui, Y. Chen, D. P. Yang, Q. Chen, Mater. Sci. Eng. C, 2018, 82, 197-203.
-
[43] X. L. Zhou, W. Z. Liu, C. Tian, S. Q. Mo, X. M. Liu, H. Deng, Z. Lin, Chem. Eng. J., 2018, 351, 816-824.
-
[44] B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie, M. S. El Aasser, Langmuir, 2001, 17, 2664-2669.
-
[45] G. Li, C. Liu, Y. Liu, Appl. Surf. Sci., 2006, 253, 2481-2486.
-
[46] H. Gao, Y. Sun, J. Zhou, R. Xu, H. Duan, ACS Appl. Mater. Interfaces, 2013, 5, 425-432.
-
[47] S. J. Abbas, P. V. R. K. Ramacharyulu, H. H. Lo, S. I. Ali, S. C. Ke, Appl. Catal. B, 2017, 210, 276-289.
-
[48] X. Wang, J. Jia, Y. Wang, Chem. Eng. J., 2017, 315, 274-282.
-
[49] Z. Zhi, Y. Yang, H. Hai, Y. Xin, H. Dong, L. Zhi, Y. Yan, C. Li, P. Huo, Catal. Sci. Technol., 2017, 7, 4092-4104.
-
[50] Y. Yang, Z. T. Zeng, C. Zhang, D. L. Huang, G. M. Zeng, R. Xiao, C. Lai, C. Y. Zhou, H. Guo, W. J. Xue, M. Cheng, W. J. Wang, J. J. Wang, Chem. Eng. J., 2018, 349, 808-821.
-
[51] S. Li, J. Hu, J. Hazard. Mater., 2016, 318, 134-144.
-
[52] Y. Chen, K. Liu, Chem. Eng. J., 2016, 302, 682-696.
-
[53] Y. Liu, X. He, X. Duan, Y. Fu, D. D. Dionysiou, Chem. Eng. J., 2015, 276, 113-121.
-
[54] G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513-886.
-
[55] Y. Li, L. Li, Z. X. Chen, J. Zhang, L. Gong, Y. X. Wang, H. Q. Zhao, Y. Mu, Chemosphere, 2017, 192, 372-378.
-
[56] Z. Zuo, Z. Cai, Y. Katsumura, N. Chitose, Y. Muroya, Radiat. Phys. Chem., 1999, 55, 15-23.
-
[57] F. A. Villamena, E. J. Locigno, A. Rockenbauer, C. M. Hadad, J. L. Zweier, J. Phys. Chem. A, 2007, 111, 384-391.
-
[58] F. He, W. Zhao, L. Liang, B. Gu, Environ. Sci. Technol. Lett., 2014, 1, 499-503.
-
-
扫一扫看文章
计量
- PDF下载量: 7
- 文章访问数: 693
- HTML全文浏览量: 22

下载: