Citation: Shengyao Wang, Zhongliang Xiong, Nan Yang, Xing Ding, Hao Chen. Iodine-doping-assisted tunable introduction of oxygen vacancies on bismuth tungstate photocatalysts for highly efficient molecular oxygen activation and pentachlorophenol mineralization[J]. Chinese Journal of Catalysis, 2020, 41(10): 1544-1553. doi: S1872-2067(19)63506-0
基于钼酸铋的碘掺杂辅助氧空位可控引入及其高效活化分子氧和矿化五氯酚作用
理论计算结果表明,未改性钨酸铋需要2.94eV的能量驱使晶格氧原子逸出形成氧空位,而表面碘掺杂可以将该能垒降至1.20eV,证明了碘掺杂可以降低钨酸铋氧空位的形成能,从而促进钨酸铋上氧空位的生成.受此启发,我们利用溶剂热法合成了系列碘掺杂钨酸铋,XRD和形貌分析表明碘的引入并未改变钨酸铋的结构.而XPS和ICP分析证实了碘的成功引入.EPR结果显示随着碘含量的增加,钨酸铋的氧空位浓度也逐渐提高,证明了碘的引入促进了氧空位的产生.通过对五氯酚钠的光催化降解实验,我们进一步研究了碘诱导产生的氧空位对材料光催化活性的影响.结果表明,所有碘掺杂的钨酸铋在可见光辐照下都表现出更高的五氯酚钠降解活性,优化后的碘掺杂钨酸铋在2h内对五氯酚钠的总有机碳去除率即可超过90%.为进一步分析碘掺杂钨酸铋光催化活性提高的原因,我们分别对样品进行了比表面测试、氧气吸附量测试及能带位置和活性物种分析.结果表明,碘元素的掺杂虽然没有明显拓展钨酸铋的吸收带边,但是可以提高钨酸铋材料在可见光区的光吸收能力,促进材料对光的利用率.更重要的是,氧空位的引入显著增强了钨酸铋对氧气的化学吸附,因而增强了其在可见光下通过活化分子氧作用,进而产生更多的超氧自由基和单线态氧促进光催化五氯酚降解.该研究为实现可控构筑含氧空位光催化材料用于环境污染物降解提供了新的思路.
English
Iodine-doping-assisted tunable introduction of oxygen vacancies on bismuth tungstate photocatalysts for highly efficient molecular oxygen activation and pentachlorophenol mineralization
-
Key words:
- Iodine doping
- / Oxygen vacancy
- / Bismuth tungstate
- / Photocatalyst
- / Molecular oxygen activation
- / NaPCP
-
-
[1] P. Abhilash, N. Singh, J. Hazard. Mater., 2009, 165, 1-2.
-
[2] J. Liu, J. Diamond, Nature, 2005, 435, 1179-1186.
-
[3] Y. Xing, Y. Lu, R. W. Dawson, Y. Shi, H. Zhang, T. Wang, W. Liu, H. Ren, Chemosphere, 2005, 60, 731-739.
-
[4] F. P. Carvalho, Environ. Sci. Polic., 2006, 9, 685-692.
-
[5] J. Fu, B. Mai, G. Sheng, G. Zhang, X. Wang, P. Peng, X. Xiao, R. Ran, F. Cheng, X. Peng, Z. Wang, U. Tang, Chemosphere, 2003, 52, 1411-1422.
-
[6] T. Bøhn, M. Cuhra, T. Traavik, M. Sanden, J. Fagan, R. Primicerio, Food Chem., 2014, 153, 207-215.
-
[7] P. H. Howard, J. Saxena, H. Sikka, Environ. Sci. Technol., 1978, 12, 398-407.
-
[8] R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today, 1999, 53, 51-59.
-
[9] S. Esplugas, D. M. Bila, L. G. T. Krause, M. Dezotti, J. Hazard. Mater., 2007, 149, 631-642.
-
[10] T. An, H. Yang, W. Song, G. Li, H. Luo, W. J. Cooper, J. Phys. Chem. A, 2010, 114, 2569-2575.
-
[11] J. M. Herrmann, Catal. Today, 1999, 53, 115-129.
-
[12] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.
-
[13] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, Q. Zhang, Z. Chen, H. Li, ACS Appl. Mater. Interfaces, 2015, 7, 20111-20123.
-
[14] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. Dunlop, J. W. Hamilton, J. A. Byrne, K. O'shea, Appl. Catal. B-Environ., 2012, 125, 331-349.
-
[15] J. Li, Y. Yu, L. Zhang, Nanoscale, 2014, 6, 8473-8488.
-
[16] Z. Wang, Y. Huang, M. Chen, X. Shi, Y. Zhang, J. Cao, W. Ho, S. C. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 10651-10662.
-
[17] Y. Huang, P. Wang, Z. Wang, Y. Rao, J. J. Cao, S. Pu, W. Ho, S. C. Lee, Appl. Catal. B-Environ., 2019, 240, 122-131.
-
[18] M. Chen, Y. Huang, J. Yao, J. J. Cao, Y. Liu, Appl. Surf. Sci., 2018, 430, 137-144.
-
[19] S. Wang, X. Yang, X. Zhang, X. Ding, Z. Yang, K. Dai, H. Chen, Appl. Surf. Sci., 2017, 391, 194-201.
-
[20] S. Wang, X. Ding, X. Zhang, H. Pang, X. Hai, G. Zhan, W. Zhou, H. Song, L. Zhang, H. Chen, Adv. Funct. Mater., 2017, 27, 1703923.
-
[21] J. Zhang, S. Wang, F. Liu, X. Fu, G. Ma, M. Hou, Z. Tang, Acta Phys.-Chem. Sin., 2019, 35, 885-895.
-
[22] S. Gu, L. Wang, J. Zhang, Chin. J. Chem., 2017, 35, 153-158.
-
[23] X. Yang, Y. Wang, X. Xu, Y. Qu, X. Ding, H. Chen, Chin. J. Catal., 2017, 38, 260-269.
-
[24] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, ACS Appl. Mater. Interfaces, 2012, 4, 4024-4030.
-
[25] M. Setvín, U. Aschauer, P. Scheiber, Y. F. Li, W. Hou, M. Schmid, A. Selloni, U. Diebold, Science, 2013, 341, 988-991.
-
[26] E. Carter, A. F. Carley, D. M. Murphy, J. Phys. Chem. C, 2007, 111, 10630-10638.
-
[27] X. Xu, X. Ding, X. Yang, P. Wang, S. Li, Z. Lu, H. Chen, J. Hazard. Mater., 2019, 364, 691-699.
-
[28] Z. Zhang, W. Wang, E. Gao, M. Shang, J. Xu, J. Hazard. Mater., 2011, 196, 255-262.
-
[29] Q. Wu, R. Van De Krol, J. Am. Chem. Soc., 2012, 134, 9369-9375.
-
[30] Y. Lv, Y. Liu, Y. Zhu, Y. Zhu, J. Mater. Chem. A, 2014, 2, 1174-1182.
-
[31] L. Ye, K. Deng, F. Xu, L. Tian, T. Peng, L. Zan, Phys. Chem. Chem. Phys., 2012, 14, 82-85.
-
[32] Y. He, X. Jin, W. Li, S. Yang, B. Lu, Chin. J. Inog. Chem., 2019, 35, 996-1004
-
[33] H. Huang, S. Tu, C. Zeng, T. Zhang, A. H. Reshak, Y. Zhang, Angew. Chem. Int. Ed., 2017, 56, 11860-11864.
-
[34] R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, J. Am. Chem. Soc., 2013, 135, 3200-3207.
-
[35] N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, J. Am. Chem. Soc., 2016, 138, 8928-8935.
-
[36] H. Fu, C. Pan, W. Yao, Y. Zhu, J. Phys. Chem. B, 2005, 109, 22432-22439.
-
[37] C. Zhang, Y. Zhu, Chem. Mater., 2005, 17, 3537-3545.
-
[38] H. Fu, L. Zhang, W. Yao, Y. Zhu, Appl. Catal. B-Environ., 2006, 66, 100-110.
-
[39] R. Shi, G. Huang, J. Lin, Y. Zhu, J. Phys. Chem. C, 2009, 113, 19633-19638.
-
[40] C. Jovalekic, L. Atanasoska, V. Petrovic, M. Ristic, J. Mater. Sci., 1991, 26, 3553-3564.
-
[41] G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
-
[42] G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
-
[43] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
-
[44] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
-
[45] L. Wang, Z. Wang, L. Zhang, C. Hu, Chem. Eng. J., 2018, 352, 664-672.
-
[46] G. Zhang, Z. Hu, M. Sun, Y. Liu, L. Liu, H. Liu, C. P. Huang, J. Qu, J. Li, Adv. Funct. Mater., 2015, 25, 3726-3734.
-
[47] Y. Zhou, Y. Zhang, M. Lin, J. Long, Z. Zhang, H. Lin, J. C. S. Wu, X. Wang, Nat. Commun., 2015, 6, 8340.
-
[48] S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye, Adv. Mater., 2017, 29, 1701774.
-
[49] X. Ding, K. Zhao, L. Zhang, Environ. Sci. Technol., 2014, 48, 5823-5831.
-
-
扫一扫看文章
计量
- PDF下载量: 4
- 文章访问数: 503
- HTML全文浏览量: 10

下载: