溴掺杂石墨相碳化氮对Cr(VI)光催化还原性能的提高

汪勉 曾玉彬 董国辉 王传义

引用本文: 汪勉,  曾玉彬,  董国辉,  王传义. 溴掺杂石墨相碳化氮对Cr(VI)光催化还原性能的提高[J]. 催化学报, 2020, 41(10): 1498-1510. doi: S1872-2067(19)63435-2 shu
Citation:  Mian Wang,  Yubin Zeng,  Guohui Dong,  Chuanyi Wang. Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction[J]. Chinese Journal of Catalysis, 2020, 41(10): 1498-1510. doi: S1872-2067(19)63435-2 shu

溴掺杂石墨相碳化氮对Cr(VI)光催化还原性能的提高

  • 基金项目:

    国家自然科学基金(21603271).

摘要: 半导体光催化技术不仅可将太阳能转化为化学能,还能直接降解和矿化有机污染物,在解决能源短缺和治理环境污染等方面具有广阔的应用前景.然而传统的TiO2光催化剂具有较大的禁带宽度(3.2eV),使得材料只能吸收紫外光(仅占太阳光的4%)且量子产率较低.因此,研究和开发新型的本身具有可见光响应的光催化材料在实际应用中具有重要的指导意义.g-C3N4作为一种非金属有机聚合物n型半导体,因具有合适的禁带宽度、独特的电子结构和良好的化学稳定性,迅速成为光催化领域的研究热点.但是,由于g-C3N4本身存在比表面积小、可见光响应范围狭窄和光生电子-空穴对分离效率低等缺陷,极大限制了其光催化实际应用.
为了解决该问题,人们进行了很多尝试来改善石墨相氮化碳光催化材料的光催化活性.研究表明,非金属元素掺杂是一种有效且常用的提高g-C3N4光催化性能的方法.例如,通过高温煅烧三聚氰胺和氧化硼混合物可制备掺B的g-C3N4,g-C3N4结构中的H元素被B取代,B的掺杂大大提高了g-C3N4的光催化活性;利用氟化铵和三聚氰胺合成F掺杂的g-C3N4,F原子与g-C3N4中心或边缘的C键合,将部分sp2杂化的碳原子转化为sp3杂化,降低了材料的平面性,从而使材料的析氢性能和催化苯氧化生成苯酚的能力有了明显提高;使用氯化铵和双氰胺作为前驱体制备Cl掺杂的g-C3N4,Cl元素的引入使g-C3N4晶格变形,带隙变窄,电荷迁移效率提高,光催化效率显著改善.
基于上述结果,并考虑到原子的电负性和大小等因素的影响,我们采用简单的一步法合成了系列Br掺杂的g-C3N4光催化剂CN-BrX.通过X射线衍射(XRD)、红外光谱(FTIR)和电子显微镜(SEM、TEM)等手段对材料的结构进行了表征,并结合元素分析(EA)和光电子能谱(XPS)研究了其形成机理.采用光催化还原Cr(VI)效率、光催化产双氧水浓度以及光催化氧化NO能力评价了CN-BrX的光催化活性,并进行了光催化反应过程动力学拟合和循环实验.通过理论计算(DFT)、紫外-可见漫反射光谱(UV-vis DRS)、荧光光谱(PL)、光电流(PC)和比表面积(BET)等测试分析了材料的光催化活性增强机理,并通过活性物种捕获实验深入探究了其光催化还原Cr(VI)的反应机理.结果表明,CN-BrX(CN-Br30除外)保留了g-C3N4的基本骨架,其中Br元素以取代碳氮杂环中N原子的形式均匀分布于g-C3N4结构中.引入的Br元素可以明显降低材料的禁带宽度,拓宽其可见光响应范围,加快光生载流子的分离效率,并增大其比表面积,从而使得改性材料具有更高的光催化氧化还原活性.此外,在Cr(VI)光催化还原过程中,光生e-,·OH和H2O2均起着重要作用.

English

    1. [1] X. Yuan, C. Zhou, Q. Jing, Q. Tang, Y. Mu, A.-K. Du, Nanomaterials, 2016, 6, 173/1-173/12.

    2. [2] Y. Zheng, Z. Yu, F. Lin, F. Guo, K. A. Alamry, L. A. Taib, A. M. Asiri, X. Wang, Molecules, 2017, 22, 572/1-572/17.

    3. [3] Q. Xia, B. Huang, X. Yuan, H. Wang, Z. Wu, L. Jiang, T. Xiong, J. Zhang, G. Zeng, H. Wang, J. Colloid Interface Sci., 2018, 530, 481-492.

    4. [4] G. Dong, L. Zhang, J. Phys. Chem. C, 2013, 117, 4062-4068.

    5. [5] X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, ACS Sustain. Chem. Eng., 2016, 4, 4055-4063.

    6. [6] Y. Zhang, Q. Wang, J. Lu, Q. Wang, Y. Cong, Chemosphere, 2016, 162, 55-63.

    7. [7] X. Hu, H. Ji, F. Chang, Y. Luo, Catal. Today, 2014, 224, 34-40.

    8. [8] M. Sun, T. Yan, Q. Yan, H. Liu, L. Yan, Y. Zhang, B. Du, RSC Adv., 2014, 4, 19980-19986.

    9. [9] W. Y. Huang, N. Liu, X. D. Zhang, M. H. Wu, L. Tang, Appl. Surf. Sci., 2017, 425, 107-116.

    10. [10] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal., 2016, 6, 7021-7029.

    11. [11] T. Xiong, W. Cen, Y. Zhang, F. Dong, ACS Catal., 2016, 6, 2462-2472.

    12. [12] G. Dong, Z. Ai, L. Zhang, Water Res., 2014, 66, 22-30.

    13. [13] G. Dong, W. Ho, L. Zhang, Appl. Catal. B-Environ., 2015, 168-169, 490-496.

    14. [14] G. Dong, W. Ho, Y. Li, L. Zhang, Appl. Catal. B-Environ., 2015, 174-175, 477-485.

    15. [15] Y. Li, L. Yang, G. Dong, W. Ho, Molecules, 2015, 21, 36/1-36/10.

    16. [16] S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Appl. Catal. B-Environ., 2016, 190, 26-35.

    17. [17] G. Dong, D. Chen, J. Luo, Y. Zhu, Y. Zeng, C. Wang, J. Hazard. Mater., 2017, 335, 66-74.

    18. [18] G. Dong, D. L. Jacobs, L. Zang, C. Wang, Appl. Catal. B-Environ., 2017, 218, 515-524.

    19. [19] G. Dong, L. Yang, F. Wang, L. Zang, C. Wang, ACS Catal., 2017, 6, 6511-6519.

    20. [20] J. Ding, W. Xu, H. Wan, D. Yuan, C. Chen, L. Wang, G. Guan, W. L. Dai, Appl. Catal. B-Environ., 2018, 221, 626-634.

    21. [21] K. Wang, Q. Li, B. Liu, B. Cheng, W. K. Ho, J. G. Yu, Appl. Catal. B-Environ., 2015, 176-177, 44-52.

    22. [22] Y. Guo, T. Chen, Q. Liu, Z. Zhang, X. Fang, J. Phys. Chem. C, 2016, 120, 25328-25337.

    23. [23] Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc., 2010, 132, 6294-6295.

    24. [24] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, Carbon, 2016, 99, 111-117.

    25. [25] G. Dong, K. Zhao, L. Zhang, Chem. Commun., 2012, 48, 6178-6180.

    26. [26] W. Zhang, J. Zhang, F. Dong, Y. Zhang, RSC Adv., 2016, 6, 88085-88089.

    27. [27] G. Zhang, P. Wang, W. T. Lu, C. Y. Wang, Y. K. Li, C. Ding, J. Gu, X. S. Zheng, F. F. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 28566-28576.

    28. [28] G. Chen, S. P. Gao, Chin. Phys. B, 2012, 21, 107101/1-107101/7.

    29. [29] S. C. Yan, Z. S. Li, Z. G. Zou, Langmuir, 2010, 26, 3894-3901.

    30. [30] M. Xu, B. Chai, J. Yan, H. Wang, Z. Ren, K. W. Paik, Nano, 2016, 11, 1650137/1-1650137/11.

    31. [31] C. Liu, Y. Zhang, F. Dong, A. H. Reshak, L. Ye, N. Pinna, C. Zeng, T. Zhang, H. Huang, Appl. Catal. B-Environ., 2017, 203, 465-474.

    32. [32] Z. A. Lan, G. Zhang, X. Wang, Appl. Catal. B-Environ., 2016, 192, 116-125.

    33. [33] G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Adv. Mater., 2014, 26, 805-809.

    34. [34] H. J. Li, B. K. Dai, Z. Yang, S. Wang, W. Sun, L. Sui, D. J. Qian, M. Chen, Phys. Chem. Chem. Phys., 2015, 17, 3309-3315.

    35. [35] X. Ding, D. Xiao, L. Ji, D. Jin, K. Dai, Z. Yang, S. Wang, H. Chen, Catal. Sci. Technol., 2018, 8, 3484-3492.

    36. [36] S. Patnaik, G. Swain, K. M. Parida, Nanoscale, 2018, 10, 5950-5964.

    37. [37] L. Shi, Z. Li, K. Marcus, G. Wang, K. Liang, W. Niu, Y. Yang, Chem. Commun., 2018, 54, 3747-3750.

    38. [38] M. Q. Wen, T. Xiong, Z. G. Zang, W. Wei, X. S. Tang, F. Dong, Opt. Express, 2016, 24, 10205-10212.

    39. [39] S. Zhang, T. H. Nguyen, Z. Zhang, H. Yue, W. Yang, Nanomaterials, 2017, 7, 12/1-12/11.

    40. [40] Y. Li, W. Ho, K. Lv, B. Zhu, S.C. Lee, Appl. Surf. Sci., 2017, 430, 380-389.

  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  474
  • HTML全文浏览量:  13
文章相关
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-03-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章