

Citation: Shi Yongheng, Bai Liming, Ma Li, Chen Yuyang, Liu Jiping, Zhang Enhu. Design, Synthesis and In vitro Biological Activity of SGLT2 Inhibitors Based on the Molecule Structure of Puerarin[J]. Chinese Journal of Organic Chemistry, 2018, 38(8): 1963-1971. doi: 10.6023/cjoc201804032

基于葛根素结构的SGLT2抑制剂的设计、合成与体外生物活性研究
English
Design, Synthesis and In vitro Biological Activity of SGLT2 Inhibitors Based on the Molecule Structure of Puerarin
-
Key words:
- puerarin
- / derivative
- / SGLT2 inhibitor
- / diabetes
- / in vitro biological
-
糖尿病是一种以高血糖为主要特征, 并伴有心血管并发症的糖代谢紊乱性疾病, 其发病率在全世界呈不断上升趋势, 在发展中国家尤为明显.目前糖尿病的治疗以控制血糖为主要目的, 防止心血管并发症对患者身体进行性损害, 但是在临床案例中部分患者未能得到满意的治疗.因此临床上需要更多有效的降血糖药物.
原尿中99%葡萄糖被分布在肾脏近曲小管的钠-葡萄糖协同转运蛋白(sodium-dependent glucose cotransporters, SGLTs)重吸收入血, 其中90%的葡萄糖的重吸收由高效的SGLT2介导转运, 剩余的葡萄糖由SGLT1完成[1].因此抑制SGLT2可减少原尿中葡萄糖的重吸收, 促进葡萄糖在尿液中的排泄, 进而有效降低血糖.
Dapagliflozin是报道的第一个C-芳基糖苷类SGLT2抑制剂, 具有很强的抑制SGLT2活性, 其IC50为1.1 nmol•L-1[2], 于2012年在欧洲上市, 2014年在美国上市, 2017年在中国上市.在Dapagliflozin的分子结构基础上研究人员相继研发了化合物Canagliflozin, Empagliflozin, Tofogliflozin, Ipragliflozin, Luseogliflozin等C-芳基糖苷类SGLT2抑制剂(图 1).其中Dapagliflozin结构最简单、专利保护最严密, 同时几乎也是活性最强、选择性最好的SGLT2抑制剂, 后续设计的SGLT2抑制剂在活性、合成难度和成本几乎很难超越它[3].因此突破专利封锁, 寻找一类具有新型结构的SGLT2抑制剂是当前这一领域的难点.
图 1
图 1. SGLT2抑制剂的分子结构Figure 1. Molecular structures of SGLT2 inhibitors that are now lunched or in clinical trials如图 2所示, Nothofagin是由南非博士茶中提取的天然二氢查尔酮碳苷, 具有很好的心血管保护和降血糖作用[4], 其抑制SGLT2的IC50为11.9 nmol•L-1, 而衍生物的IC50可达9 nmol•L-1[5].这类化合物与已报道的C-芳基糖苷类SGLT2抑制剂在分子结构上有很大的差别, 且苷元中携带多个酚羟基, 有望成为一类新型结构的SGLT2抑制剂, 也为寻找新型结构的SGLT2抑制剂开拓了新的方向.
图 2
天然产物黄酮碳苷往往具有明显的降血糖作用, 但降糖机制的阐述呈现多样性[6, 7].葛根素是中药葛根的有效活性单体, 其注射液可辅助治疗糖尿病、心肌病等疾病; 具有C-芳基-β-D-葡萄糖苷结构, 且含有多个酚羟基, 具有与Nothofagin相似的分子结构. Meezan等[8, 9]认为葛根素与根皮苷一样可抑制SGLTs, 在后续的研究中发现葛根素在肾脏大量蓄积, 并推测葛根素是SGLTs的底物.本课题组[10]前期研究发现给大鼠口服60 mg•kg-1葛根素时可出现明显的降血糖和促尿糖现象.体外抑制SGLT2的IC50为400 nmol•L-1.基于以上发现, 本课题组以葛根素为先导化合物, 对葛根素分子结构进行系统地化学修饰获得一系列葛根素衍生物, 结合构体外抑制SGLT2的活性来揭示这类化合物的构效关系, 从而为发现新型结构的SGLT2抑制剂提供一定的理论基础.
2. 结果与讨论
2.1 合成
如Scheme 1所示, 葛根素的4'-OH和7-OH是发生取代反应的主要基团.由于8-糖环片段的存在, 7-OH空间位阻远远的大于4'-OH, 导致4'-OH的H比7-OH的H更易被取代基所取代, 因此可对葛根素分子结构上的两个酚羟基进行选择性取代.葛根素与1.2 equiv.的卤代烃在K2CO3的催化下反应生成单取代的4'-O-取代基葛根素, 如1b~1m, 但是与CH3I反应则会生成双取代的7, 4'-O-二甲基葛根素(2a).在研究中发现, 随着取代基碳链的延长, 产率逐渐减少, 甚至延长反应时间也未能提高产率, 反而导致副产物增多; 但是当取代基是苄基及其衍生物时, 葛根素衍生物的产率会增加, 如1k~1m.
Scheme 1
单取代葛根素衍生物进一步与CH3I或者Et2SO4在K2CO3的催化下生成7, 4'-O-二取代基葛根素2b~2m, 研究中发现单取代葛根素衍生物与CH3I反应副产物较多, 而与Et2SO4反应几乎无副产物.
如Scheme 1所示, 葛根素的衍生物3n, 3bm和3be的合成采用10% Pd(OH)2/C为催化剂和H2为氢源在四氢呋喃(THF)溶液中进行.研究发现10% Pd/C、Pd/CaCO3或者Pt/C的催化效果并不好, 出现反应时间过长或者还原不完全的现象, 最后采用10% Pd(OH)2/C为催化剂; 而氢源在尝试了HCOOH、HCONH2和环己烯后, 效果不理想, 最后采用氢气[11, 12]; 4'位和7位的取代基会影响催化反应, 葛根素催化还原生成3n只需在室温下即可完成, 而2bm和2be催化还原分别生成3bm和3be则需加热至65 ℃.
2.2 体外生物活性
采用能稳定表达人SGLT2蛋白的CHO为细胞模型、以Dapagliflozin为阳性对照, 以[14C]-α-甲基-D-葡萄糖苷([14C]-α-methyl-D-glucopyranoside, 14C-AMG)为底物, 评价葛根素衍生物体外抑制SGLT2的活性.如表 1所示, 葛根素体外抑制SGLT2的IC50只有1202.9 nmol•L-1, 当4'-OH和7-OH上的H被烷基或者苄基取代后, 化合物的活性普遍增强.对比2b~2m等化合物可以发现, 随着取代基碳链的延长, 衍生物体外抑制SGLT2的活性也随之增强.携带有正丙基的葛根素衍生物2c抑制SGLT2的IC50为226.4 nmol•L-1, 而携带有异丙基的葛根素衍生物2d抑制SGLT2的IC50为885.3 nmol•L-1, 同样, 携带有正丁基的葛根素衍生物2e抑制SGLT2的活性也远远强于携带有叔丁基的葛根素衍生物的2f, 因此4'-OH的H被直链烃基取代比支链烃基取代更有利于体外活性的增强.化合物1i抑制SGLT2的IC50为52.4 nmol• L-1, 而7-OH的H被乙基取代后的化合物2i对SGLT2的IC50为27.7 nmol•L-1, 两者之间的活性差异比不显著, 同样, 1j和2j、1l和2l以及1m和2m之间的活性不存在数量级差异.因此, 当4'-OH的取代基脂溶性较大时, 7-OH的H取代或者保留, 对化合物体外抑制SGLT2的活性影响并不是太大, 这也与Nothofagin及其衍生物抑制SGLT2的活性的构效关系相一致[5].化合物1i、1j、1l和1m在分子结构上由于保留了7-OH, 同时也可能保留了黄酮碳苷抗氧化、调血脂的心血管保护作用, 这对糖尿病心血管并发症的治疗是有利的[13, 14]. 3n、3bm和3be是葛根素及其部分衍生物还原后获的黄烷碳苷衍生物, 但体外抑制SGLT2的活性都远远低于对应的葛根素、2bm和2be, 说明将黄酮碳苷还原为黄烷碳苷是不利于增强活性的.
表 1
表 1 葛根素衍生物的体外抑制SGLT2活性[IC50/(nmol•L-1)]aTable 1. IC50 of puerarin derivatives against SGLT2 [IC50/ (nmol•L-1)]Compd. IC50 Dapa 1.22±0.18b Pue 1202.9±155.4c 1b 823.5±79.5 1i 52.4±6.2 1j 62.8±7.5 1l 90.1±7.1 1m 40.5±3.7 2a 1021.8±98.4 2bm 615.0±54.8 2be 464.2±50.7 2c 226.4±30.9 2d 885.3±142.4 2e 23.6±3.5 2f 206.2±30.8 2g 43.5±3.9 2h 492.4±40.1 2i 27.7±3.1 2j 35.8±4.7 2k 72.6±5.9 2l 41.4±6.8 2m 30.8±5.1 3n 26215.6±2144.5 3bm 12827.5±1328.5 3be 115591.4±15242.1 a These data were performed in triplicate and expressed as mean±SD. b IC50 values for hSGLT2 of dapafliflozin reported was 1.1 nmol/L[2]. c IC50 value for hSGLT2 of puerarin reported was 400 nmol/L[8]. 3. 结论
对葛根素的4'-OH和7-OH用不同的取代基进行了比较系统地化学修饰, 合成了一系列葛根素衍生物, 并采用体外细胞实验评价其抑制SGLT2活性, 揭示了这类化合物抑制SGLT2的构效关系.葛根素4'-OH和7-OH的H被脂溶性取代基取代后, 化合物抑制SGLT2的活性增强, 其中化合物2e、2i和2m抑制SGLT2的IC50分别是23.6, 27.7和30.8 nmol•L-1, 其活性是葛根素的40~60倍; 单取代衍生物1i、1j、1l和1m也呈现出很强的抑制SGLT2的活性, 同时也可能保留了葛根素抗氧化和调血脂的心血管保护作用, 这对治疗糖尿病及其心血管并发症是有意义的.
4. 实验部分
4.1 仪器与试剂
熔点采用X-4型数显显微熔点测定仪测定, 温度计未校正; 1H NMR和13C NMR采用Bruker AV400型核磁共振仪测定, 分别以DMSO-d6和MeOD作溶剂, TMS内标; 高分辨质谱采用Agilent Q-TOF 6510系统测定, 电喷雾离子化(ESI)技术.
4.2 合成
4.2.1 8-C-β-D-葡萄糖基-7-羟基-4'-O-取代基异黄酮碳苷(1b~1m)的合成
2.0 g的葛根素(4.8 mmol)和0.80 g K2CO3 (5.76 mmol)加入到10 mL N, N-二甲基甲酰胺(DMF)中, 冰浴下搅拌, 缓慢加入卤代烃(碘甲烷为10.0 mmol, 其它卤代烃为5.0 mmol)或者取代的溴苄(5.0 mmol), 滴加完毕后反应混合物在CaCl2干燥管保护下室温反应8 h.
将反应混合物慢慢倾倒到100 mL水中, 水相再用CH2Cl2萃取(100 mL×3).合并有机相, 用饱和食盐水洗涤, 无水Na2SO4干燥, 在旋转蒸发仪上蒸去溶剂, 得到化合物1的粗品.该粗品用硅胶柱层析纯化得到化合物1的纯品.
8-C-β-D-葡萄糖基-7-羟基-4'-O-乙基异黄酮碳苷(1b):白色固体, 产率73%. m.p. 183~185 ℃ (lit.[15] 168 ℃); 1H NMR (DMSO-d6, 400 MHz) δ: 9.50 (s, 1H), 8.37 (d, J=9.2 Hz, 1H), 8.05 (dd, J=8.8, 1.6 Hz. 1H), 7.39 (dd, J=8.8, 4.0 Hz, 2H), 7.24 (dd, J=11.2, 7.2 Hz, 1H), 6.79 (dd, J=8.8, 1.6 Hz, 2H), 4.95 (dd, J=10.0, 4.4 Hz, 1H), 4.89 (d, J=4.8 Hz, 1H), 4.74~4.82 (m, 3H), 4.32~4.43 (m, 1H), 4.03~4.15 (m, 1H), 3.68~3.78 (m, 1H), 3.34~3.41 (m, 1H), 3.09~3.25 (m, 3H), 2.87 (s, 1H), 2.72 (s, 1H), 1.32 (q, J=9.2 Hz, 3H).
8-C-β-D-葡萄糖基-7-羟基-4'-O-正丙基异黄酮碳苷(1c)[16]:白色固体, 产率65%. m.p. 195~197 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.50 (s, 1H), 8.38 (d, J=9.2 Hz, 1H), 8.07 (d, J=8.8 Hz, 1H), 7.40 (dd, J=8.8, 2.8 Hz, 2H), 7.22 (dd, J=8.8, 5.6 Hz, 1H), 6.80 (dd, J=8.8, 2.0 Hz, 2H), 4.95~4.99 (m, 2H), 4.77~4.98 (m, 2H), 4.40~4.43 (m, 1H), 4.01~4.12 (m, 3H), 3.68~3.76 (m, 1H), 3.36~3.40 (m, 1H), 3.06~3.32 (m, 3H), 1.73~1.81 (m, 2H), 1.07 (q, J=7.6 Hz, 3H).
8-C-β-D-葡萄糖基-7-羟基-4'-O-异丙基异黄酮碳苷(1d):白色固体, 产率60%. m.p. 180~182 ℃ (lit.[17] 144 ℃); 1H NMR (DMSO-d6, 400 MHz) δ: 9.48 (s, 1H), 8.32 (s, 1H), 7.93 (d, J=8.8 Hz, 2H), 7.38 (d, J=8.8 Hz, 2H), 6.97 (d, J=8.8 Hz, 1H), 6.79 (d, J=8.8 Hz, 2H), 4.91~4.94 (m, 2H), 4.79~4.81 (m, 2H), 4.45~4.48 (m, 1H), 3.98~4.02 (m, 1H), 3.69~3.71 (m, 1H), 3.41~3.44 (m, 1H), 3.19~3.44 (m, 3H), 2.87 (s, 3H), 2.72 (s, 3H).
8-C-β-D-葡萄糖基-7-羟基-4'-O-正丁基异黄酮碳苷(1e):白色固体, 产率66%. m.p. 197~199 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.51 (s, 1H), 8.37 (d, J=8.8 Hz, 1H), 8.06 (d, J=8.8 Hz, 1H), 7.39 (dd, J=8.8, 2.8 Hz, 2H), 7.21 (dd, J=8.8, 2.4 Hz, 1H), 6.79 (d, J=8.8, 2.0 Hz, 2H), 4.91~4.94 (m, 2H), 4.78~4.83 (m, 2H), 4.45~4.47 (m, 1H), 4.02~4.12 (m, 3H), 3.70~3.73 (m, 1H), 3.21~3.44 (m, 3H), 1.72~1.76 (m, 2H), 1.45~1.55 (m, 2H), 0.96 (t, J=7.2 Hz, 3H); HR-ESI-MS calcd for C25H29O9 (M+H+) 473.1812, found 473.1817.
8-C-β-D-葡萄糖基-7-羟基-4'-O-叔丁基异黄酮碳苷(1f):白色固体, 产率64%. m.p. 188~189 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.51 (s, 1H), 8.37 (d, J=8.8 Hz, 1H), 8.06 (d, J=8.8 Hz, 1H), 7.39 (dd, J=8.8, 2.8 Hz, 2H), 7.21 (dd, J=8.8, 2.4 Hz, 1H), 6.79 (d, J=8.8, 2.0 Hz, 2H), 4.91~4.94 (m, 2H), 4.75~4.81 (m, 2H), 4.45~4.47 (m, 1H), 4.05~4.10 (m, 1H), 3.70~3.73 (m, 1H), 3.37~3.42 (m, 1H), 3.21~3.34 (m, 3H) 1.48 (s, 3H), 1.41 (s, 6H); HR-ESI-MS calcd for C25H29O9 (M+H+) 473.1812, found 473.1821.
8-C-β-D-葡萄糖基-7-羟基-4'-O-正戊基异黄酮碳苷(1g):白色固体, 产率65%. m.p. 226~228 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.51(s, 1H), 8.38 (d, J=11.2 Hz, 1H), 8.06 (d, J=9.2 Hz, 1H), 7.40 (dd, J=8.8, 2.8 Hz, 2H), 7.21 (dd, J=9.2, 6.8 Hz, 1H), 6.80 (dd, J=8.4, 2.0 Hz, 2H), 4.90~4.99 (m, 2H), 4.42 (t, J=5.6 Hz, 1H), 4.02~4.14 (m, 3H), 3.67~3.77 (m, 1H), 3.32~3.42 (m, 1H), 3.20~3.30 (m, 2H), 3.04~3.10 (m, 1H), 1.74~1.77 (m, 2H), 1.45~1.58 (m, 2H), 1.31~1.35 (m, 2H), 0.91 (t, J=7.2 Hz, 3H); HR-ESI-MS calcd for C26H31O9 (M+H+) 487.1963, found 487.1965.
8-C-β-D-葡萄糖基-7-羟基-4'-O-环戊基异黄酮碳苷(1h):白色固体, 产率63%. m.p. 211~212 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.53 (s, 1H), 8.39 (d, J=11.2 Hz, 1H), 8.07 (d, J=9.2 Hz, 1H), 7.40 (dd, J=8.8, 2.0 Hz, 2H), 7.24 (dd, J=8.8, 2.8 Hz, 1H), 6.81 (dd, J=8.8, 2.0 Hz, 2H), 4.95~5.05 (m, 3H), 4.75~4.83 (m, 3H), 4.44~4.57 (m, 1H), 4.07~4.08 (m, 1H), 4.03~4.06 (m, 1H), 3.31~3.42 (m, 1H), 3.20~3.29 (m, 2H), 3.05~3.09 (m, 1H), 1.79~1.83 (m, 6H), 1.62~1.75 (m, 2H); HR-ESI-MS calcd for C26H29O9 (M+H+) 485.1812, found 485.1808.
8-C-β-D-葡萄糖基-7-羟基-4'-O-正己基异黄酮碳苷(1i):白色固体, 产率61%. m.p. 250~252 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.51 (s, 1H), 9.38 (d, J=13.2 Hz, 1H), 8.06 (d, J=8.8 Hz, 1H), 7.39 (dd, J=8.2, 2.8 Hz, 2H), 7.21 (dd, J=9.2, 3.2 Hz, 1H), 6.80 (dd, J=8.8, 2.0 Hz, 2H), 4.95~4.97 (m, 2H), 4.80~4.84 (m, 1H), 4.7~4.77 (m, 1H), 4.39~4.42 (m, 1H), 4.04~4.14 (m, 3H), 3.67~3.77 (m, 1H), 3.31~3.42 (m, 1H), 3.20~3.29 (m, 2H), 3.05~3.09 (m, 1H), 1.71~1.78 (m, 2H), 1.51~1.55 (m, 2H), 1.27~1.30 (m, 6H), 0.85 (q, J=6.8 Hz, 3H); HR-ESI-MS calcd for C27H33O9 (M+H+) 501.2125, found 501.2118.
8-C-β-D-葡萄糖基-7-羟基-4'-O-正辛基异黄酮碳苷(1j):白色固体, 产率60%. m.p. 238~240 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.51 (s, 1H), 8.38 (d, J=13.2 Hz, 1H), 8.06 (d, J=9.2 Hz, 1H), 7.40 (dd, J=8.8, 2.8 Hz, 2H), 7.21 (dd, J=8.8, 3.2 Hz, 1H), 6.79 (dd, J=8.8, 2.0 Hz, 2H), 4.95~4.97 (m, 2H), 4.80~4.84 (m, 1H), 4.7~4.77 (m, 1H), 4.39~4.42 (m, 1H), 4.04~4.14 (m, 3H), 3.67~3.77 (m, 1H), 3.31~3.42 (m, 1H), 3.20~3.29 (m, 2H), 3.05~3.09 (m, 1H), 1.71~1.78 (m, 2H), 1.51~1.56 (m, 2H), 1.26~1.30 (m, 8H), 0.86 (t, J=5.6 Hz, 3H); HR-ESI-MS calcd for C29H37O9 (M+H+) 529.2438, found 529.2441.
8-C-β-D-葡萄糖基-7-羟基-4'-O-苄基异黄酮碳苷(1k):白色固体, 产率82%. m.p. 214~215 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.53 (s, 1H), 8.40 (d, J=12.0 Hz, 1H), 8.14 (d, J=8.8 Hz, 1H), 7.51 (d, J=8.0 Hz, 1H), 7.39~7.43 (m, 4H), 7.23 (d, J=8.0 Hz, 2H), 6.86 (dd, J=8.8, 4.8 Hz, 2H), 5.20~5.28 (m, 2H), 5.12~5.14 (m, 1H), 4.47~4.54 (m, 1H), 4.08~4.15 (m, 1H), 3.75~3.86 (m, 1H), 3.37~3.57 (m, 1H), 3.23~3.27 (m, 3H); HR-ESI- MS calcd for C28H27O9 (M+H+) 507.1655, found 507.1660.
8-C-β-D-葡萄糖基-7-羟基-4'-O-(4-甲基苄基)异黄酮碳苷(1l):白色固体, 产率85%. m.p. 224~226 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.54 (d, J=6.8 Hz, 1H), 8.42 (d, J=12.0 Hz, 1H), 8.12 (d, J=8.8 Hz, 1H), 7.50 (d, J=8.0 Hz, 1H), 7.37~7.42 (m, 4H), 7.21 (d, J=8.0 Hz, 2H), 6.81 (dd, J=8.8, 4.8 Hz, 2H), 5.20~5.5.28 (m, 2H), 4.83~5.03 (m, 4H), 4.45~4.58 (m, 1H), 4.06~4.16 (m, 1H), 3.71~3.85 (m, 1H), 3.37~3.57 (m, 1H), 3.23~3.27 (m, 3H), 2.32 (s, 3H); HR-ESI-MS calcd for C29H29O9 (M+H+) 521.1812, found 521.1811.
8-C-β-D-葡萄糖基-7-羟基-4'-O-(4-甲氧基苄基)异黄酮碳苷(1m):白色固体, 产率90%. m.p. 237~239 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.55 (s, 1H), 8.42 (d, J=12.4 Hz, 1H), 8.12 (d, J=8.8 Hz, 1H), 7.53 (d, J=8.4 Hz, 1H), 7.41~7.44 (m, 3H), 7.33 (m, 1H), 6.95 (dd, J=8.4, 3.6 Hz, 2H), 6.83 (dd, J=8.4, 3.6 Hz, 2H), 5.20~5.25 (m, 2H), 4.82~4.97 (m, 4H), 4.48~4.55 (m, 1H), 3.76~3.78 (m, 4H), 3.38~3.51 (m, 1H), 3.08~3.31 (m, 3H); HR-ESI-MS calcd for C29H29O10 (M+H+) 537.1761, found 537.1727.
4.2.2 8-C-β-D-葡萄糖基-7-O-取代基-4'-O-取代基异黄酮碳苷2a~2m的合成
葛根素衍生物1 (2.0 mmol)和K2CO3 (2.4 mmol)加入到10 mL DMF中, 冰浴下搅拌, 缓慢加入碘甲烷(2.4 mmol)或者硫酸二乙酯(1.2 mmol), 滴加完毕后反应混合物在CaCl2干燥管保护下室温反应5 h.
反应混合物慢慢倾倒到100 mL水中, 水相再用CH2Cl2萃取(100 mL×3).合并有机相, 用饱和食盐水洗涤, 无水Na2SO4干燥, 在旋转蒸发仪上蒸去溶剂, 得到化合物2的粗品.该粗品用硅胶柱层析纯化得到化合物2的纯品
8-C-β-D-葡萄糖基-7, 4'-O-二甲基异黄酮碳苷(2a):白色固体, 产率75%. m.p. 157~159 ℃ (lit.[17] 154~155 ℃); 1H NMR (DMSO-d6, 400 MHz) δ: 8.43 (d, J=12.4 Hz, 1H), 8.10 (d, J=9.2 Hz, 1H), 7.52 (dd, J=8.8, 3.2 Hz, 2H), 7.25 (d, J=9.2 Hz, 1H), 6.98 (dd, J=8.8, 2.4 Hz, 2H), 4.88~4.96 (m, 2H), 4.76~4.84 (m, 2H), 4.39~4.41 (m, 1H), 4.29~4.31 (m, 1H), 4.05~4.12 (m, 1H), 3.91 (s, 3H), 3.75 (m, 3H), 3.69~3.72 (m, 1H), 3.15~3.30 (m, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.7, 162.9, 159.0, 156.0, 153.5, 129.9, 127.2, 123.6, 123.8, 117.3, 114.2, 113.6, 110.7, 81.3, 78.9, 73.6, 73.3, 71.4, 70.6, 63.8, 61.9; HR-ESI-MS calcd for C23H25O9 (M+H+) 445.1497, found 445.1501.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-乙基异黄酮碳苷(2bm):白色固体, 产率65%. m.p. 137~138 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.43 (d, J=10.0 Hz, 1H), 8.08 (d, J=8.8 Hz, 1H), 7.52 (dd, J=8.8, 4.8 Hz, 2H), 7.22 (dd, J=8.8, 5.2 Hz, 1H), 6.98 (dd, J=8.8, 2.0 Hz, 2H), 4.96 (m, 1H), 4.89~4.90 (m, 1H), 4.79~4.83 (m, 1H), 4.75~4.77 (m, 1H), 4.38~4.42 (m, 1H), 4.13~4.21 (m, 4H), 3.78 (s, 3H), 3.71~3.73 (m, 1H), 3.37~3.39 (m, 1H), 3.20~3.29 (m, 3H), 1.37 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.8, 162.9, 159.0, 156.0, 153.5, 129.9, 127.2, 123.6, 123.8, 117.3, 114.2, 113.6, 110.7, 81.3, 78.9, 73.6, 73.3, 71.4, 70.7, 64.9, 61.9, 13.6; HR-ESI-MS calcd for C24H27O9 (M+H+) 459.1648, found 459.1651.
8-C-β-D-葡萄糖基-7, 4'-O-二乙基异黄酮碳苷(2be):白色固体, 产率65%, m.p. 128~129 ℃ (lit.[17] 120 ℃); 1H NMR (DMSO-d6, 400 MHz) δ: 8.43 (d, J=10.4 Hz, 1H), 8.08 (d, J=8.8 Hz, 1H), 7.51 (dd, J=8.8, 4.4 Hz, 2H), 7.22 (dd, J=8.8, 5.2 Hz, 1H), 6.97 (dd, J=8.8, 2.4 Hz, 2H), 4.96 (m, 1H), 4.89~4.90 (m, 1H), 4.79~4.83 (m, 1H), 4.75~4.77 (m, 1H), 4.13~4.22 (m, 3H), 4.01~4.11 (m, 3H), 3.71~3.78 (m, 1H), 3.37~3.39 (m, 1H), 3.20~3.29 (m, 3H), 1.38 (t, J=6.8 Hz, 6H); 13C NMR (MeOD, 100 MHz) δ: 176.8, 162.9, 159.0, 156.0, 153.5, 129.9, 127.2, 123.6, 123.8, 117.3, 114.2, 113.6, 110.7, 81.3, 78.9, 73.6, 73.3, 71.4, 70.7, 64.9, 63.8, 13.6, 13.1; HR-ESI-MS calcd for C25H29O9 (M+H+) 473.1812, found 473.1817.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-正丙基异黄酮碳苷(2c):白色固体, 产率70%. m.p. 138~139 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.44 (d, J=8.8 Hz, 1H), 8.08 (d, J=9.2 Hz, 1H), 7.53 (dd, J=8.4, 4.4 Hz, 2H), 7.22 (dd, J=8.8, 5.6 Hz, 1H), 6.97 (dd, J=8.8, 2.0 Hz, 2H), 4.96~4.99 (m, 1H), 4.89~4.90 (m, 1H), 4.79~4.83 (m, 1H), 4.75~4.77 (m, 1H), 4.13~4.22 (m, 3H), 4.01~4.11 (m, 3H), 3.78 (s, 3H), 3.68~3.75 (m, 1H), 3.32~3.40 (m, 1H), 3.09~3.12 (m, 3H), 1.18~1.80 (m, 2H), 1.03 (q, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.8, 162.9, 159.0, 156.0, 153.5, 129.9, 127.3, 123.9, 123.7, 117.3, 114.2, 113.5, 110.7, 81.4, 78.9, 73.6, 73.3, 71.4, 70.7, 64.9, 62.3, 22.2, 9.8; HR-ESI-MS calcd for C25H29O9 (M+H+) 473.1812, found 473.1808.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-异丙基异黄酮碳苷(2d):白色固体, 产率67%. m.p. 132~133 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.45 (d, J=12.0 Hz, 1H), 8.10 (d, J=9.2 Hz, 1H), 7.53 (dd, J=8.8, 3.6 Hz, 2H), 7.25 (d, J=8.8 Hz, 1H), 6.99 (dd, J=8.8, 2.4 Hz, 2H), 4.91~4.94 (m, 2H), 4.79~4.81 (m, 2H), 4.47~4.49 (m, 1H), 4.98~4.02 (m, 1H), 3.78 (s, 3H), 3.68~3.75 (m, 1H), 3.32~3.40 (m, 1H), 3.09~3.12 (m, 3H), 2.91 (s, 3H), 2.76 (s, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.8, 162.9, 159.0, 156.0, 153.5, 129.9, 127.3, 123.9, 123.7, 117.3, 114.2, 113.5, 110.7, 83.2 81.4, 78.9, 73.6, 73.3, 70.7, 64.9, 62.3, 22.2; HR-ESI-MS calcd for C25H29O9 (M+H+) 473.1812, found 473.1817.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-正丁基异黄酮碳苷(2e):白色固体, 产率72%. m.p. 145~146 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.44 (d, J=8.8 Hz, 1H), 8.08 (d, J=9.2 Hz, 1H), 7.53 (dd, J=8.8, 2.0 Hz, 2H), 7.23 (dd, J=8.8, 6.4 Hz, 1H), 6.98 (dd, J=8.8, 2.4 Hz, 2H), 4.90~4.99 (m, 2H), 4.83~4.85 (m, 1H), 4.78~4.81 (m, 1H), 4.35~4.41 (m, 1H), 4.06~4.16 (m, 3H), 3.78 (s, 3H), 3.70~3.73 (m, 1H), 3.35~3.41 (m, 1H), 3.11~3.14 (m, 3H), 1.71~1.76 (m, 2H), 1.45~1.55 (m, 2H), 0.93 (q, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.8, 162.9, 159.0, 156.0, 153.5, 129.8, 127.2, 123.7, 117.3, 116.1, 114.2, 113.9, 110.7, 81.5, 78.9, 73.5, 71.3, 70.7, 68.9, 63.1, 61.9, 47.0, 19.1, 13.2; HR-ESI-MS calcd for C26H31O9 (M+H+) 487.1963, found 487.1965.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-叔丁基异黄酮碳苷(2f):白色固体, 产率71%. m.p. 130~131 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.45 (d, J=2.8 Hz, 1H), 8.02 (d, J=8.8 Hz, 1H), 7.53 (dd, J=8.4, 2.0 Hz, 2H), 7.32 (d, J=8.4 Hz, 1H), 6.98 (dd, J=8.4, 2.0 Hz), 4.90~4.99 (m, 2H), 4.83~4.85 (m, 1H), 4.78~4.81 (m, 1H), 4.35~4.41 (m, 1H), 4.06~4.16 (m, 3H), 3.78 (s, 3H), 3.70~3.73 (m, 1H), 3.35~3.41 (m, 1H), 3.11~3.21 (m, 3H), 1.48 (s, 3H), 1.41 (s, 6H); 13C NMR (MeOD, 100 MHz) δ: 176.8, 162.9, 159.0, 156.0, 153.5, 129.8, 127.2, 123.7, 117.3, 116.1, 114.2, 113.9, 111.0, 110.7, 81.3, 78.9, 73.5, 71.3, 70.7, 68.9, 63.1, 62.1, 27.4; HR-ESI-MS calcd for C26H31O9 (M+H+) 487.1963, found 487.1960.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-正戊基异黄酮碳苷(2g):白色固体, 产率70%. m.p. 160~161 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.43 (d, J=8.8 Hz, 1H), 8.07 (d, J=9.2 Hz, 1H), 7.53 (dd, J=8.4, 2.0 Hz, 2H), 7.23 (d, J=8.4 Hz, 1H), 6.98 (dd, J=8.4, 2.0 Hz), 4.90~4.99 (m, 2H), 4.83~4.85 (m, 1H), 4.76~4.81 (m, 1H), 4.41~4.43 (m, 1H), 4.03~4.15 (m, 3H), 3.78 (s, 3H), 3.68~3.76 (m, 1H), 3.32~3.42 (m, 1H), 3.04~3.27 (m, 3H), 1.74~1.77 (m, 2H), 1.44~1.56 (m, 2H), 1.31~1.42 (m, 2H), 0.92 (q, J=7.2 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 174.6, 161.6, 159.8, 156.2, 153.5, 129.9, 127.3, 123.8, 123.5, 117.3, 114.0, 113.5, 111.0, 81.5, 81.3, 78.9, 73.5, 71.3, 70.7, 68.9, 62.3, 28.7, 28.2, 27.9, 22.1; HR-ESI-MS calcd for C27H33O9 (M+H+) 501.2125, found 501.2103.
8-C-β-D-葡萄糖基-7-O-乙基-4'-O-环戊基异黄酮碳苷(2h):白色固体, 产率65%. m.p. 135~136 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.42 (d, J=8.8 Hz, 1H), 8.06 (d, J=8.8 Hz, 1H), 7.51 (dd, J=8.8, 2.0 Hz, 2H), 7.24 (dd, J=8.8, 3.2 Hz, 1H), 6.96 (dd, J=8.8, 2.0 Hz, 2H), 5.03~5.05 (m, 1H), 4.88~4.99 (m, 2H), 4.74~4.83 (m, 2H), 4.37~4.44 (m, 1H), 4.02~4.09 (m, 3H), 3.67~3.76 (m, 1H), 3.30~3.41 (m, 1H), 3.05~3.25 (m, 3H), 1.77~1.84 (m, 6H), 1.61~1.62 (m, 2H), 1.33 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 174.6, 161.6, 159.8, 156.2, 153.5, 129.9, 127.3, 123.8, 123.5, 117.3, 114.0, 113.5, 111.0, 83.1, 81.5, 81.3, 78.9, 73.5, 71.3, 70.7, 68.9, 31.7, 28.2, 24.9, 11.3; HR-ESI-MS calcd for C28H33O9 (M+H+) 513.2119, found 513.2115.
8-C-β-D-葡萄糖基-7-O-乙基-4'-O-正己基异黄酮碳苷(2i):白色固体, 产率72%. m.p. 198~200 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.43 (d, J=9.6 Hz, 1H), 8.07 (d, J=9.6 Hz, 1H), 7.51 (dd, J=8.8, 3.6 Hz, 2H), 7.22 (dd, J=8.8, 3.2 Hz, 1H), 6.96 (dd, J=8.8, 2.4 Hz, 2H), 4.92~4.99 (m, 2H), 4.81~4.85 (m, 1H), 4.76~4.78 (m, 1H), 4.40~4.43 (m, 1H), 4.09~4.13 (m, 3H), 4.05 (q, J=7.6 Hz, 2H), 3.67~3.77 (m, 1H), 3.31~3.42 (m, 1H), 3.03~3.27 (m, 3H), 1.71~1.78 (m, 2H), 1.42~1.57 (m, 2H), 1.31~1.35 (m, 7H), 0.88 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 174.6, 161.6, 159.8, 156.2, 153.5, 129.9, 127.3, 123.8, 123.5, 117.3, 114.0, 113.5, 111.0, 81.5, 81.3, 78.9, 73.5, 71.3, 70.7, 68.9, 62.1, 28.7, 28.2, 27.9, 19.1, 18.4, 12.1; HR-ESI-MS calcd for C29H37O9 (M+H+) 529.2408, found 529.2425.
8-C-β-D-葡萄糖基-7-O-乙基-4'-O-正辛基异黄酮碳苷(2j):白色固体, 产率55%. m.p. 198~199 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.43 (d, J=9.6 Hz, 1H), 8.07 (d, J=9.6 Hz, 1H), 7.51 (dd, J=8.8, 3.6 Hz, 2H), 7.22 (dd, J=8.8, 3.2 Hz, 1H), 6.96 (dd, J=8.8, 2.4 Hz, 2H), 4.92~4.99 (m, 2H), 4.81~4.85 (m, 1H), 4.76~4.78 (m, 1H), 4.40~4.43 (m, 1H), 4.09~4.13 (m, 3H), 4.05 (q, J=7.6 Hz, 2H), 3.67~3.77 (m, 1H), 3.31~3.42 (m, 1H), 3.03~3.27 (m, 3H), 1.71~1.78 (m, 2H), 1.42~1.57 (m, 2H), 1.31~1.35 (m, 9H), 0.88 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 174.6, 161.6, 159.8, 156.2, 153.5, 129.9, 127.3, 123.8, 123.5, 117.3, 114.0, 113.5, 111.0, 81.5, 81.3, 78.9, 73.5, 71.3, 70.7, 68.9, 62.1, 28.7, 28.2, 27.9, 19.1, 18.4, 12.1; HR-ESI-MS calcd for C31H41O9 (M+H+) 557.2751, found 557.2745.
8-C-β-D-葡萄糖基-7-O-乙基-4'-O-苄基异黄酮碳苷(2k):白色固体, 产率65%. m.p. 212~213 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.47 (d, J=12.0 Hz, 1H), 8.12 (d. J=8.8 Hz, 1H), 7.52~7.56 (m, 3H), 7.43 (d, J=8.4 Hz, 1H), 7.33~7.37 (m, 2H), 6.92~6.96 (m, 4H), 5.18~5.20 (m, 2H), 4.81~4.93 (m, 4H), 4.46~4.58 (m, 1H), 4.04~4.09 (m, 3H), 3.76~3.79 (m, 1H), 3.40~3.56 (m, 1H), 3.09~3.28 (m, 3H), 1.35 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.9, 163.7, 162.2, 161.1, 157.3, 153.4, 132.5, 129.9, 129.3, 127.2, 124.4, 122.6, 117.7, 115.0, 114.8, 114.4, 111.3, 81.4, 78.9, 73.8, 73.6, 71.8, 71.4, 70.4, 62.0, 12.8; HR-ESI-MS calcd for C31H33NaO10 (M+Na+) 587.1893, found 587.1888.
8-C-β-D-葡萄糖基-7-O-乙基-4'-O-(4-甲基苄基)异黄酮碳苷(2l):白色固体, 产率72%. m.p. 207~208 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.48 (d, J=13.6 Hz, 1H), 8.12 (d, J=8.8 Hz, 1H), 7.96 (s, 1H), 7.49~7.54 (m, 3H), 7.37~7.40 (m, 2H), 7.21 (d, J=8.0 Hz, 2H), 6.98 (dd, J=8.4, 4.4 Hz, 2H), 5.20~5.28 (m, 2H), 4.90~4.99 (m, 4H), 4.43~4.49 (m, 1H), 4.03~4.09 (m, 3H), 3.75~3.86 (m, 1H), 3.41~3.56 (m, 1H), 3.11~3.29 (m, 3H), 2.31 (s, 3H), 1.35 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.9, 163.7, 162.2, 161.1, 157.3, 153.4, 132.5, 129.9, 129.3, 127.2, 124.4, 122.6, 117.7, 115.0, 114.8, 114.4, 111.3, 81.4, 78.9, 73.8, 73.6, 71.8, 71.4, 70.4, 62.0, 22.3, 13.2; HR-ESI-MS calcd for C31H33O9 (M+ H+) 549.2119, found 549.2123.
8-C-β-D-葡萄糖基-7-O-乙基-4'-O-(4-甲氧基苄基)异黄酮碳苷(2m):白色固体, 产率76%. m.p. 224~226 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.47 (d, J=12.4 Hz, 1H), 8.12 (d. J=8.8 Hz, 1H), 7.52~7.54 (m, 3H), 7.43 (d, J=8.4 Hz, 1H), 7.33~7.37 (m, 1H), 6.94~6.99 (m, 4H), 5.20~5.25 (m, 2H), 4.82~4.97 (m, 4H), 4.46~4.58 (m, 1H), 4.04~4.09 (m, 3H), 3.76~3.79 (m, 4H), 3.40~3.56 (m, 1H), 3.08~3.31 (m, 3H), 1.35 (t, J=6.8 Hz, 3H); 13C NMR (MeOD, 100 MHz) δ: 176.9, 163.7, 162.2, 161.1, 157.3, 153.4, 132.5, 129.9, 129.3, 127.2, 124.4, 122.6, 117.7, 115.0, 114.8, 114.4, 111.3, 81.4, 78.9, 73.8, 73.6, 71.8, 71.4, 70.4, 62.0, 56.2, 12.8; HR-ESI-MS calcd for C31H33NaO10 (M+Na+) 587.1888, found 587.1872.
4.2.3 8-C-β-D-葡萄糖基-7-O-取代基-4'-O-取代基异黄烷碳苷3n、3bm和3be的合成
葛根素及其衍生物2bm和2be (2.0 mmol)和10% Pd(OH)2/C加入到20 mL甲醇中, 在H2保护下反应, 直至TLC显示反应完全, 抽滤除去Pd(OH)2/C, 滤液在旋转蒸发仪上蒸去溶剂, 得到化合物3的粗品.该粗品用硅胶柱层析纯化得到化合物3的纯品.
8-C-β-D-葡萄糖基-7, 4'-二羟基异黄烷碳苷(3n):白色固体, 产率85%. m.p. 157~158 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.23 (s, 1H), 8.44 (s, 1H), 7.10 (dd, J=8.0, 1.6 Hz, 2H), 6.81 (d, J=8.0 Hz, 1H), 6.69 (dd, J=8.8, 1.6 Hz, 2H), 6.30 (d, J=8.0 Hz, 1H), 4.84 (s, 1H), 4.80 (s, 1H), 4.65 (dd, J=9.6, 4.4 Hz, 1H), 4.49 (m, 2H), 4.20 (d, J=10.4 Hz, 1H), 3.81~3.86 (m, 2H), 3.64 (d, J=11.2 Hz, 1H), 3.46 (d, J=10.8 Hz, 1H), 3.15~3.17 (m, 3H), 3.97~3.03 (m, 1H), 2.75~2.87 (m, 2H); HR- ESI-MS calcd for C21H24NaO8 (M+Na+) 427.1363, found 427.1365.
8-C-β-D-葡萄糖基-7-O-甲基-4'-O-乙基异黄烷碳苷(3bm):白色固体, 产率90%. m.p. 131~132 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 7.24 (dd, J=8.4, 1.6 Hz, 2H), 6.91 (d, J=8.0 Hz, 1H), 6.85 (dd, J=8.4, 1.6 Hz, 2H), 6.50 (d, J=8.0 Hz, 1H), 4.75~4.79 (m, 2H), 4.61 (d, J=9.6 Hz, 1H), 4.42 (d, J=5.6 Hz, 1H), 4.21~4.40 (m, 2H), 4.07~4.18 (m, 2H), 3.81~4.03 (m, 7H), 3.60~3.72 (m, 1H), 3.08~3.16 (m, 4H), 2.89~3.06 (m, 2H), 1.29 (t, J=7.6 Hz, 3H); HR-ESI-MS calcd for C24H30NaO8 (M+Na+) 469.1833, found 469.1826.
8-C-β-D-葡萄糖基-7, 4'-O-二乙基异黄烷碳苷(3be):白色固体, 产率84%. m.p. 136~137℃; 1H NMR (DMSO-d6, 400 MHz) δ: 7.25 (dd, J=8.0, 1.6 Hz, 2H), 6.93 (d, J=8.0 Hz, 1H), 6.87 (dd, J=8.0, 1.6 Hz, 2H), 6.50 (d, J=8.0 Hz, 1H), 4.73~4.79 (m, 2H), 4.62 (d, J=9.6 Hz, 1H), 4.43 (d, J=5.6 Hz, 1H), 4.21~4.40 (m, 2H), 4.07~4.18 (m, 2H), 3.81~4.03 (m, 6H), 3.61~3.74 (m, 1H), 3.09~3.16 (m, 4H), 2.86~3.06 (m, 2H), 1.29 (t, J=7.6 Hz, 6H); HR-ESI-MS calcd for C25H32NaO8 (M+ Na+) 483.1989, found 483.1991.
4.3 体外生物活性评价
葛根素及其衍生物体外抑制SGLT2的活性是按照文献[2]提供的方法进行.采用能稳定表达hSGLT2蛋白的CHO细胞为载体和[14C]-AMG为底物评价葛根素衍生物体外抑制SGLT2的活性.
将葛根素衍生物用二甲基亚砜(DMSO)溶解, 起始浓度为200 μmol•L-1, 4倍等比稀释, 10个浓度梯度, 待用.在96孔板上依次加入5 μL/孔化合物溶液和45 μL/孔含2.5 μCi•mL-1 [14C]-AMG的缓冲液(包含有120 mmol•L-1 NaCl、4.7 mmol•L-1 KCl、1.2 mmol•L-1 MgCl2、2.2 mmol•L-1 CaCl2、10 mmol•L-1 HEPES、1 mmol•L-1 Tris, pH 7.4), 得到不同浓度的葛根素-[14C]- AMG缓冲液, 待用.
采用体积分数为10%胎牛血清的RPMI1640培养基, 待CHO细胞长到80%满的时候, 加入胰酶-EDTA溶液, 待细胞脱壁后吹成单细胞悬液, 调整细胞密度为3×108个/L, 按100 μL/孔的量接种到96孔的细胞培养板中, 并在37 ℃、体积分数为5% CO2培养箱中培养12 h.用150 μL/孔的KRH-Na+裂解液洗细胞一次, 吸干, 加入50 μL/孔对应浓度的葛根素衍生物, 振荡混合后, 培养箱中培养1 h, 而后立即在每个孔中加入150 μL/孔冰冷的洗涤缓冲液[包含有120 mmol•L-1 NaCl, 4.7 mmol•L-1 KCl, 1.2 mmol•L-1 MgCl2, 2.2 mmol•L-1 CaCl2, 10 mmol•L-1 HEPES, 0.5 mmol•L-1 phlorizin (pH=7.4, 含1 mmol•L-1 Tris)]以终止吸收试验, 清洗3次.
加入50 μL/孔的Lysis缓冲液(100 mmol•L-1 NaOH), 600 r/min振荡5 min, 加入150 μL/孔的闪烁液Microsint40到所有孔中, 600 r/min振荡5 min, 置于MicroBeta Trilux仪器上测定放射活性.平行测定3次, 求取均值, 采用x±s表示, 用SPSS 19.0软件计算葛根素抑制SGLT2的IC50.
辅助材料(Supporting Information) 1H NMR, 13C NMR和HR-ESI-MS谱图.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
Hummel, C. S.; Lu, C.; Loo, D. D. F.; Hirayama, B. A.; Voss, A. A. Am. J. Physiol.:Cell Physiol. 2011, 300, C14. doi: 10.1152/ajpcell.00388.2010
-
[2]
Meng, M.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.; Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.; Pullockaran, A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.; Humphreys, W. G.; Khanna, A.; Discenza, L.; Robertson, J. M.; Wang, A.; Han, S.; Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; Whaley, J. M.; Washburn, W. N. J. Med. Chem. 2008, 51, 1145. doi: 10.1021/jm701272q
-
[3]
Cai, W. Q.; Jiang, L. L.; Xie, Y. F.; Liu, Y. Q.; Liu, W.; Zhao, G. L. Med. Chem. 2015, 11, 317. doi: 10.2174/1573406411666150105105529
-
[4]
Kawano, A.; Nakamura, H.; Hata, S.; Minakawa, M.; Miura, Y.; Yagasaki, K. Phytomedicine 2009, 16, 437. doi: 10.1016/j.phymed.2008.11.009
-
[5]
Jesus, A. R.; Vila-Viçosa, D.; Machuqueiro, M.; Marques, A. P.; Dore, T. M.; Rauter, A. P. J. Med. Chem. 2017, 60, 568. doi: 10.1021/acs.jmedchem.6b01134
-
[6]
Choo, C. Y.; Sulong, N. Y.; Man, F.; Wong, T. W. J. Ethnopharmacol. 2012, 142, 776. doi: 10.1016/j.jep.2012.05.062
-
[7]
Hsu, F. L.; Liu, I. M.; Kuo, D. H.; Chen, W. C.; Su, H. C.; Cheng, J. T. J. Nat. Prod. 2003, 66, 788. doi: 10.1021/np0203887
-
[8]
Prasain, J. K.; Peng, N.; Moore, R.; Arabshahi, A.; Barnes, S.; Wyss, J. M. Phytomedicine 2009, 16, 65. doi: 10.1016/j.phymed.2008.09.004
-
[9]
Meezan, E.; Meezan, E. M.; Jones, K.; Moore, R.; Barnes, S.; Prasain, J. K. J. Agric. Food Chem. 2005, 53, 8760. doi: 10.1021/jf058105e
-
[10]
史永恒, 邓颖颖, 刘继平, 张恩户, 药物评价研究, 2017, 40, 1408.Shi, Y. H.; Deng, Y. Y.; Liu, J. P.; Zhang, E. H. Drug Eval. Res. 2017, 40, 1408(in Chinese).
-
[11]
Shi, Y. H.; Xu, H. Q.; Liu, B. N.; Kong, W. L.; Wei, Q. C.; Xu, W. R.; Tang, L. D.; Zhao, G. L. Monatsh. Chem. 2013, 144, 1903. doi: 10.1007/s00706-013-1053-0
-
[12]
Xiao, Z. P.; Peng, Z. Y.; Dong, J. J.; He, J.; Ouyang, H.; Feng, Y. T.; Lu, C. L.; Lin, W. Q.; Wang, J. X.; Xiang, Y. P.; Zhu, H. L. Eur. J. Med. Chem. 2013, 63, 695. doi: 10.1088/1674-1056/26/3/036802/pdf
-
[13]
Rice-evans, C. A.; Miller, N. J.; Paganga, G. Free Radical. Biol. Med. 1996, 20, 933. doi: 10.1016/0891-5849(95)02227-9
-
[14]
Xiao, J. B.; Capanoglu, E.; Jassbi, A. R.; Miron, A. Crit. Rev. Food Sci. 2015, 56, S29 http://www.ncbi.nlm.nih.gov/pubmed/26505214
-
[15]
Eade, R. A.; Mcdonald, F. J.; Pham, H. Aust. J. Chem. 1978, 31, 2699. doi: 10.1071/CH9782699
-
[16]
韩瑞敏, 田玉玺, 王鹏, 向俊锋, 艾希成, 张建平, 高等学校化学学报, 2006, 27, 1716. doi: 10.3321/j.issn:0251-0790.2006.09.023Han, R. M.; Tian, Y. X.; Wang, P.; Xiang, J. F.; Ai, X. C.; Zhang, J. P. Chem. J. Chin. Univ. 2006, 27, 1716(in Chinese). doi: 10.3321/j.issn:0251-0790.2006.09.023
-
[17]
杨若林, 李娜, Xuan, B., Chiou, G. C. Y., 闵知大, 中国药科大学学报, 1999, 30, 81. doi: 10.3321/j.issn:1000-5048.1999.02.001Yang, R. L.; Li, N.; Xuan, B.; Chiou, G. C. Y.; Min, Z. D. J. Chin. Pharm. Univ. 1999, 30, 81(in Chinese). doi: 10.3321/j.issn:1000-5048.1999.02.001
-
[1]
-
表 1 葛根素衍生物的体外抑制SGLT2活性[IC50/(nmol•L-1)]a
Table 1. IC50 of puerarin derivatives against SGLT2 [IC50/ (nmol•L-1)]
Compd. IC50 Dapa 1.22±0.18b Pue 1202.9±155.4c 1b 823.5±79.5 1i 52.4±6.2 1j 62.8±7.5 1l 90.1±7.1 1m 40.5±3.7 2a 1021.8±98.4 2bm 615.0±54.8 2be 464.2±50.7 2c 226.4±30.9 2d 885.3±142.4 2e 23.6±3.5 2f 206.2±30.8 2g 43.5±3.9 2h 492.4±40.1 2i 27.7±3.1 2j 35.8±4.7 2k 72.6±5.9 2l 41.4±6.8 2m 30.8±5.1 3n 26215.6±2144.5 3bm 12827.5±1328.5 3be 115591.4±15242.1 a These data were performed in triplicate and expressed as mean±SD. b IC50 values for hSGLT2 of dapafliflozin reported was 1.1 nmol/L[2]. c IC50 value for hSGLT2 of puerarin reported was 400 nmol/L[8]. -

计量
- PDF下载量: 23
- 文章访问数: 1773
- HTML全文浏览量: 405