Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function

QI Helena W. KARELINA Maria KULIK Heather J

引用本文: QI Helena W.,  KARELINA Maria,  KULIK Heather J. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. 物理化学学报, 2018, 34(1): 81-91. doi: 10.3866/PKU.WHXB201706303 shu
Citation:  QI Helena W.,  KARELINA Maria,  KULIK Heather J. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 81-91. doi: 10.3866/PKU.WHXB201706303 shu

Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function

  • 基金项目:

    The project was supported by the MIT Research Support Committee NEC Corporation Seed Grant and Burroughs Wellcome Fund Career Award at the Scientific Interface,USA.H.J.K.holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.H.W.Q.was supported by a Department of Energy Computational Science Graduate Fellowship (DOE-CSGF).

摘要: Multi-scale quantum-mechanical/molecular-mechanical (QM/MM) and large-scale QM simulation provide valuable insight into enzyme mechanism and structure-property relationships. Analysis of the electron density afforded through these methods can enhance our understanding of how the enzyme environment modulates reactivity at the enzyme active site. From this perspective, tools from conceptual density functional theory to interrogate electron densities can provide added insight into enzyme function. We recently introduced the highly parallelizable Fukui shift analysis (FSA) method, which identifies how frontier states of an active site are altered by the presence of an additional QM residue to identify when QM treatment of a residue is essential as a result of quantum-mechanically affecting the behavior of the active site. We now demonstrate and analyze distance and residue dependence of Fukui function shifts in pairs of residues representing different non-covalent interactions. We also show how the interpretation of the Fukui function as a measure of relative nucleophilicity provides insight into enzymes that carry out SN2 methyl transfer. The FSA method represents a promising approach for the systematic, unbiased determination of quantum mechanical effects in enzymes and for other complex systems that necessitate multi-scale modeling.

English

    1. [1]

      (1) Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem. 1990, 11, 700. doi: 10.1002/jcc.540110605

    2. [2]

      (2) Bakowies, D.; Thiel, W. J. Phys. Chem. 1996, 100, 10580. doi: 10.1021/jp9536514

    3. [3]

      (3) Mordasini, T. Z.; Thiel, W. Chimia 1998, 52, 288.

    4. [4]

      (4) Monard, G.; Merz, K. M. Acc. Chem. Res. 1999, 32, 904. doi: 10.1021/ar970218z

    5. [5]

      (5) Gao, J. L.; Truhlar, D. G. Annu. Rev. Phys. Chem. 2002, 53, 467. doi: 10.1146/annurev.physchem.53.091301.150114

    6. [6]

      (6) Rosta, E.; Klahn, M.; Warshel, A. J. Phys. Chem. B 2006, 110, 2934. doi: 10.1021/jp057109j

    7. [7]

      (7) Lin, H.; Truhlar, D. Theor. Chem. Acc. 2007, 117, 185. doi: 10.1007/s00214-006-0143-z

    8. [8]

      (8) Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227. doi: 10.1016/0022-2836(76)90311-9

    9. [9]

      (9) Senn, H. M.; Thiel, W. Angew. Chem. Int. Ed. 2009, 48, 1198. doi: 10.1002/anie.200802019

    10. [10]

      (10) Thellamurege, N. M.; Hirao, H. J. Phys. Chem. B 2014, 118, 2084. doi: 10.1021/jp412538n

    11. [11]

      (11) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.; Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio, R. A., Jr. J. Phys. Chem. B 2010, 114, 2549. doi: 10.1021/jp910674d

    12. [12]

      (12) Halgren, T. A.; Damm, W. Curr. Opin. Struct. Biol. 2001, 11, 236. doi: 10.1016/S0959-440X(00)00196-2

    13. [13]

      (13) Vidossich, P.; Florin, G.; Alfonso-Prieto, M.; Derat, E.; Shaik, S.; Rovira, C. J. Phys. Chem. B 2010, 114, 5161. doi: 10.1021/jp911170b

    14. [14]

      (14) Carloni, P.; Rothlisberger, U.; Parrinello, M. Acc. Chem. Res. 2002, 35, 455. doi: 10.1021/ar010018u

    15. [15]

      (15) Kulik, H. J.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J. Phys. Chem. B 2012, 116, 12501. doi: 10.1021/jp307741u

    16. [16]

      (16) Liu, F.; Luehr, N.; Kulik, H. J.; Martínez, T. J. J.Chem. Theory Comput. 2015, 11, 3131. doi: 10.1021/acs.jctc.5b00370

    17. [17]

      (17) Flaig, D.; Beer, M.; Ochsenfeld, C. J. Chem. Theory Comput. 2012, 8, 2260. doi: 10.1021/ct300036s

    18. [18]

      (18) Hartman, J. D.; Neubauer, T. J.; Caulkins, B. G.; Mueller, L. J.; Beran, G. J. J. Biomol. NMR 2015, 62, 327. doi: 10.1007/s10858-015-9947-2

    19. [19]

      (19) Fox, S. J.; Pittock, C.; Fox, T.; Tautermann, C. S.; Malcolm, N.; Skylaris, C. K. J. Chem. Phys. 2011, 135, 224107. doi: 10.1063/1.3665893

    20. [20]

      (20) Liao, R. Z.; Thiel, W. J. Comput. Chem. 2013, 34, 2389. doi: 10.1002/jcc.23403

    21. [21]

      (21) Sadeghian, K.; Flaig, D.; Blank, I. D.; Schneider, S.; Strasser, R.; Stathis, D.; Winnacker, M.; Carell, T.; Ochsenfeld, C. Angew. Chem. Int. Ed. 2014, 53, 10044. doi: 10.1002/anie.201403334

    22. [22]

      (22) Kulik, H. J.; Zhang, J.; Klinman, J. P.; Martinez, T. J. J. Phys. Chem. B 2016, 120, 11381. DOI: 10.1021/acs.jpcb.6b07814

    23. [23]

      (23) Solt, I.; Kulhanek, P.; Simon, I.; Winfield, S.; Payne, M. C.; Csanyi, G.; Fuxreiter, M. J. Phys. Chem. B 2009, 113, 5728. doi: 10.1021/jp807277r

    24. [24]

      (24) Isborn, C. M.; Goetz, A. W.; Clark, M. A.; Walker, R. C.; Martinez, T. J. J. Chem. Theory Comput. 2012, 8, 5092. doi: 10.1021/ct3006826

    25. [25]

      (25) Vanpoucke, D. E.; Oláh, J.; De Proft, F.; Van Speybroeck, V.; Roos, G. J. Chem. Inf. Model. 2015, 55, 564. doi: 10.1021/ci5006417

    26. [26]

      (26) Harris, T. V.; Szilagyi, R. K. J. Comput. Chem. 2016, 37, 1681. doi: 10.1002/jcc.24384

    27. [27]

      (27) Karelina, M.; Kulik, H. J. J. Chem. Theory Comput. 2017, 13, 563. doi: 10.1021/acs.jctc.6b01049

    28. [28]

      (28) Morgenstern, A.; Jaszai, M.; Eberhart, M. E.; Alexandrova, A. N. Chem. Sci. 2017. doi: 10.1039/C7SC01301A

    29. [29]

      (29) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p

    30. [30]

      (30) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036

    31. [31]

      (31) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008

    32. [32]

      (32) Faver, J.; Merz, K. M., Jr. J. Chem. Theory Comput. 2010, 6, 548. doi: 10.1021/ct9005085

    33. [33]

      (33) Fukushima, K.; Wada, M.; Sakurai, M. Proteins: Struct., Funct., Bioinf. 2008, 71, 1940. doi: 10.1002/prot.21865

    34. [34]

      (34) Guerra, C. F.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25, 189. doi: 10.1002/jcc.10351

    35. [35]

      (35) Ufimtsev, I. S.; Martínez, T. J. J. Chem. Theory Comput. 2009, 5, 2619. doi: 10.1021/ct9003004

    36. [36]

      (36) Petachem. http://www.petachem.com. (accessed May 20, 2017).

    37. [37]

      (37) Rutherford, K.; Le Trong, I.; Stenkamp, R. E.; Parson, W. W. J. Mol. Biol. 2008, 380, 120. doi: 10.1016/j.jmb.2008.04.040

    38. [38]

      (38) Patra, N.; Ioannidis, E. I.; Kulik, H. J. PloS One 2016, 11, e0161868. doi: 10.1371/journal.pone.0161868

    39. [39]

      (39) Zhang, J.; Kulik, H. J.; Martinez, T. J.; Klinman, J. P. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 7954. doi: 10.1073/pnas.1506792112

    40. [40]

      (40) Griffith, S. C.; Sawaya, M. R.; Boutz, D. R.; Thapar, N.; Katz, J. E.; Clarke, S.; Yeates, T. O. J. Mol. Biol. 2001, 313, 1103. doi: 10.1006/jmbi.2001.5095

    41. [41]

      (41) Labahn, J.; Granzin, J.; Schluckebier, G.; Robinson, D. P.; Jack, W. E.; Schildkraut, I.; Saenger, W. Proc. Natl. Acad. Sci.U. S. A. 1994, 91, 10957.

    42. [42]

      (42) Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. Nucleic Acids Res. 2012, 40, W537. doi: 10.1093/nar/gks375

    43. [43]

      (43) Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.; Onufriev, A. Nucleic Acids Res. 2005, 33, W368. doi: 10.1093/nar/gki464

    44. [44]

      (44) Myers, J.; Grothaus, G.; Narayanan, S.; Onufriev, A. Proteins: Struct., Funct., Bioinf. 2006, 63, 928. doi: 10.1002/prot.20922

    45. [45]

      (45) Case, D.A.; Berryman, J. T.; Betz, R.M.; Cerutti, D.S., Cheatham, Ⅲ, D.S.; Darden, T.A.; Duke, R.E.; Giese, T.J., Gohlke, H.; Goetz, A.W.; et al., Amber 2015; University of California: San Francisco. 2015.

    46. [46]

      (46) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11, 3696. doi: 10.1021/acs.jctc.5b00255

    47. [47]

      (47) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins: Struct., Funct., Bioinf. 2006, 65, 712. doi: 10.1002/prot.21123

    48. [48]

      (48) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035

    49. [49]

      (49) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269. doi: 10.1021/j100142a004

    50. [50]

      (50) Gordon, M. S.; Schmidt, M. W. Theory Appl. Comput. Chem.: First Forty Years 2005, 1167.

    51. [51]

      (51) Harihara, P. C.; Pople, J. A. Theor Chim Acta 1973, 28, 213. doi: 10.1007/bf00533485

    52. [52]

      (52) Wang, F.; Becker, J.-P.; Cieplak, P.; Dupradeau, F.-Y. R.E.D. Python: Object Oriented Programming for Amber Force Fields; Université De Picardie - Jules Verne: Sanford|Burnham Medical Research Institute, Nov. 2013. http://q4md-forcefieldtools.org/REDServer-Development/ (accessed 5/20/17).

    53. [53]

      (53) Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.; Dupradeau, F.-Y. Nucleic Acids Res. 2011, 39, W511. doi: 10.1093/nar/gkr288

    54. [54]

      (54) Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. Phys. Chem. Chem. Phys. 2010, 12, 7821. doi: 10.1039/C0CP00111B

    55. [55]

      (55) Allnér, O.; Nilsson, L.; Villa, A. J. Chem. Theory Comput. 2012, 8, 1493. doi: 10.1021/ct3000734

    56. [56]

      (56) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    57. [57]

      (57) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. doi: 10.1016/0021-9991(77)90098-5

    58. [58]

      (58) Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.7.4.3. 2010.

    59. [59]

      (59) Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. J. Chem. Phys. 2009, 130, 054112. doi: 10.1063/1.3073302

    60. [60]

      (60) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913

    61. [61]

      (61) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001

    62. [62]

      (62) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785

    63. [63]

      (63) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885

    64. [64]

      (64) Axelrod, J.; Tomchick, R. J. Biol.Chem. 1958, 233, 702.

    65. [65]

      (65) Hegazi, M. F.; Borchardt, R. T.; Schowen, R. L. J. Am. Chem. Soc. 1979, 101, 4359. doi: 10.1021/ja00509a052

    66. [66]

      (66) Woodard, R. W.; Tsai, M. D.; Floss, H. G.; Crooks, P. A.; Coward, J. K. J. Biol. Chem. 1980, 255, 9124.

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  702
  • HTML全文浏览量:  51
文章相关
  • 收稿日期:  2017-06-07
  • 修回日期:  2017-06-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章