Citation: QI Helena W., KARELINA Maria, KULIK Heather J. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 81-91. doi: 10.3866/PKU.WHXB201706303
Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function
-
关键词:
- Fukui functions
- / Enzyme catalysis
- / QM/MM
- / Methyltransferases
English
Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function
-
Key words:
- Fukui functions
- / Enzyme catalysis
- / QM/MM
- / Methyltransferases
-
-
[1]
(1) Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem. 1990, 11, 700. doi: 10.1002/jcc.540110605
-
[2]
(2) Bakowies, D.; Thiel, W. J. Phys. Chem. 1996, 100, 10580. doi: 10.1021/jp9536514
-
[3]
(3) Mordasini, T. Z.; Thiel, W. Chimia 1998, 52, 288.
-
[4]
(4) Monard, G.; Merz, K. M. Acc. Chem. Res. 1999, 32, 904. doi: 10.1021/ar970218z
-
[5]
(5) Gao, J. L.; Truhlar, D. G. Annu. Rev. Phys. Chem. 2002, 53, 467. doi: 10.1146/annurev.physchem.53.091301.150114
-
[6]
(6) Rosta, E.; Klahn, M.; Warshel, A. J. Phys. Chem. B 2006, 110, 2934. doi: 10.1021/jp057109j
-
[7]
(7) Lin, H.; Truhlar, D. Theor. Chem. Acc. 2007, 117, 185. doi: 10.1007/s00214-006-0143-z
-
[8]
(8) Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227. doi: 10.1016/0022-2836(76)90311-9
-
[9]
(9) Senn, H. M.; Thiel, W. Angew. Chem. Int. Ed. 2009, 48, 1198. doi: 10.1002/anie.200802019
-
[10]
(10) Thellamurege, N. M.; Hirao, H. J. Phys. Chem. B 2014, 118, 2084. doi: 10.1021/jp412538n
-
[11]
(11) Ponder, J. W.; Wu, C.; Ren, P.; Pande, V. S.; Chodera, J. D.; Schnieders, M. J.; Haque, I.; Mobley, D. L.; Lambrecht, D. S.; DiStasio, R. A., Jr. J. Phys. Chem. B 2010, 114, 2549. doi: 10.1021/jp910674d
-
[12]
(12) Halgren, T. A.; Damm, W. Curr. Opin. Struct. Biol. 2001, 11, 236. doi: 10.1016/S0959-440X(00)00196-2
-
[13]
(13) Vidossich, P.; Florin, G.; Alfonso-Prieto, M.; Derat, E.; Shaik, S.; Rovira, C. J. Phys. Chem. B 2010, 114, 5161. doi: 10.1021/jp911170b
-
[14]
(14) Carloni, P.; Rothlisberger, U.; Parrinello, M. Acc. Chem. Res. 2002, 35, 455. doi: 10.1021/ar010018u
-
[15]
(15) Kulik, H. J.; Luehr, N.; Ufimtsev, I. S.; Martinez, T. J. J. Phys. Chem. B 2012, 116, 12501. doi: 10.1021/jp307741u
-
[16]
(16) Liu, F.; Luehr, N.; Kulik, H. J.; Martínez, T. J. J.Chem. Theory Comput. 2015, 11, 3131. doi: 10.1021/acs.jctc.5b00370
-
[17]
(17) Flaig, D.; Beer, M.; Ochsenfeld, C. J. Chem. Theory Comput. 2012, 8, 2260. doi: 10.1021/ct300036s
-
[18]
(18) Hartman, J. D.; Neubauer, T. J.; Caulkins, B. G.; Mueller, L. J.; Beran, G. J. J. Biomol. NMR 2015, 62, 327. doi: 10.1007/s10858-015-9947-2
-
[19]
(19) Fox, S. J.; Pittock, C.; Fox, T.; Tautermann, C. S.; Malcolm, N.; Skylaris, C. K. J. Chem. Phys. 2011, 135, 224107. doi: 10.1063/1.3665893
-
[20]
(20) Liao, R. Z.; Thiel, W. J. Comput. Chem. 2013, 34, 2389. doi: 10.1002/jcc.23403
-
[21]
(21) Sadeghian, K.; Flaig, D.; Blank, I. D.; Schneider, S.; Strasser, R.; Stathis, D.; Winnacker, M.; Carell, T.; Ochsenfeld, C. Angew. Chem. Int. Ed. 2014, 53, 10044. doi: 10.1002/anie.201403334
-
[22]
(22) Kulik, H. J.; Zhang, J.; Klinman, J. P.; Martinez, T. J. J. Phys. Chem. B 2016, 120, 11381. DOI: 10.1021/acs.jpcb.6b07814
-
[23]
(23) Solt, I.; Kulhanek, P.; Simon, I.; Winfield, S.; Payne, M. C.; Csanyi, G.; Fuxreiter, M. J. Phys. Chem. B 2009, 113, 5728. doi: 10.1021/jp807277r
-
[24]
(24) Isborn, C. M.; Goetz, A. W.; Clark, M. A.; Walker, R. C.; Martinez, T. J. J. Chem. Theory Comput. 2012, 8, 5092. doi: 10.1021/ct3006826
-
[25]
(25) Vanpoucke, D. E.; Oláh, J.; De Proft, F.; Van Speybroeck, V.; Roos, G. J. Chem. Inf. Model. 2015, 55, 564. doi: 10.1021/ci5006417
-
[26]
(26) Harris, T. V.; Szilagyi, R. K. J. Comput. Chem. 2016, 37, 1681. doi: 10.1002/jcc.24384
-
[27]
(27) Karelina, M.; Kulik, H. J. J. Chem. Theory Comput. 2017, 13, 563. doi: 10.1021/acs.jctc.6b01049
-
[28]
(28) Morgenstern, A.; Jaszai, M.; Eberhart, M. E.; Alexandrova, A. N. Chem. Sci. 2017. doi: 10.1039/C7SC01301A
-
[29]
(29) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
-
[30]
(30) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049. doi: 10.1021/ja00326a036
-
[31]
(31) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708. doi: 10.1021/ja00279a008
-
[32]
(32) Faver, J.; Merz, K. M., Jr. J. Chem. Theory Comput. 2010, 6, 548. doi: 10.1021/ct9005085
-
[33]
(33) Fukushima, K.; Wada, M.; Sakurai, M. Proteins: Struct., Funct., Bioinf. 2008, 71, 1940. doi: 10.1002/prot.21865
-
[34]
(34) Guerra, C. F.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comput. Chem. 2004, 25, 189. doi: 10.1002/jcc.10351
-
[35]
(35) Ufimtsev, I. S.; Martínez, T. J. J. Chem. Theory Comput. 2009, 5, 2619. doi: 10.1021/ct9003004
-
[36]
(36) Petachem. http://www.petachem.com. (accessed May 20, 2017).
-
[37]
(37) Rutherford, K.; Le Trong, I.; Stenkamp, R. E.; Parson, W. W. J. Mol. Biol. 2008, 380, 120. doi: 10.1016/j.jmb.2008.04.040
-
[38]
(38) Patra, N.; Ioannidis, E. I.; Kulik, H. J. PloS One 2016, 11, e0161868. doi: 10.1371/journal.pone.0161868
-
[39]
(39) Zhang, J.; Kulik, H. J.; Martinez, T. J.; Klinman, J. P. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 7954. doi: 10.1073/pnas.1506792112
-
[40]
(40) Griffith, S. C.; Sawaya, M. R.; Boutz, D. R.; Thapar, N.; Katz, J. E.; Clarke, S.; Yeates, T. O. J. Mol. Biol. 2001, 313, 1103. doi: 10.1006/jmbi.2001.5095
-
[41]
(41) Labahn, J.; Granzin, J.; Schluckebier, G.; Robinson, D. P.; Jack, W. E.; Schildkraut, I.; Saenger, W. Proc. Natl. Acad. Sci.U. S. A. 1994, 91, 10957.
-
[42]
(42) Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. Nucleic Acids Res. 2012, 40, W537. doi: 10.1093/nar/gks375
-
[43]
(43) Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.; Onufriev, A. Nucleic Acids Res. 2005, 33, W368. doi: 10.1093/nar/gki464
-
[44]
(44) Myers, J.; Grothaus, G.; Narayanan, S.; Onufriev, A. Proteins: Struct., Funct., Bioinf. 2006, 63, 928. doi: 10.1002/prot.20922
-
[45]
(45) Case, D.A.; Berryman, J. T.; Betz, R.M.; Cerutti, D.S., Cheatham, Ⅲ, D.S.; Darden, T.A.; Duke, R.E.; Giese, T.J., Gohlke, H.; Goetz, A.W.; et al., Amber 2015; University of California: San Francisco. 2015.
-
[46]
(46) Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. J. Chem. Theory Comput. 2015, 11, 3696. doi: 10.1021/acs.jctc.5b00255
-
[47]
(47) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Proteins: Struct., Funct., Bioinf. 2006, 65, 712. doi: 10.1002/prot.21123
-
[48]
(48) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157. doi: 10.1002/jcc.20035
-
[49]
(49) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269. doi: 10.1021/j100142a004
-
[50]
(50) Gordon, M. S.; Schmidt, M. W. Theory Appl. Comput. Chem.: First Forty Years 2005, 1167.
-
[51]
(51) Harihara, P. C.; Pople, J. A. Theor Chim Acta 1973, 28, 213. doi: 10.1007/bf00533485
-
[52]
(52) Wang, F.; Becker, J.-P.; Cieplak, P.; Dupradeau, F.-Y. R.E.D. Python: Object Oriented Programming for Amber Force Fields; Université De Picardie - Jules Verne: Sanford|Burnham Medical Research Institute, Nov. 2013. http://q4md-forcefieldtools.org/REDServer-Development/ (accessed 5/20/17).
-
[53]
(53) Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J. C.; Cieplak, P.; Dupradeau, F.-Y. Nucleic Acids Res. 2011, 39, W511. doi: 10.1093/nar/gkr288
-
[54]
(54) Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. Phys. Chem. Chem. Phys. 2010, 12, 7821. doi: 10.1039/C0CP00111B
-
[55]
(55) Allnér, O.; Nilsson, L.; Villa, A. J. Chem. Theory Comput. 2012, 8, 1493. doi: 10.1021/ct3000734
-
[56]
(56) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869
-
[57]
(57) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327. doi: 10.1016/0021-9991(77)90098-5
-
[58]
(58) Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 1.7.4.3. 2010.
-
[59]
(59) Rohrdanz, M. A.; Martins, K. M.; Herbert, J. M. J. Chem. Phys. 2009, 130, 054112. doi: 10.1063/1.3073302
-
[60]
(60) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[61]
(61) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. doi: 10.1021/j100096a001
-
[62]
(62) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[63]
(63) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885
-
[64]
(64) Axelrod, J.; Tomchick, R. J. Biol.Chem. 1958, 233, 702.
-
[65]
(65) Hegazi, M. F.; Borchardt, R. T.; Schowen, R. L. J. Am. Chem. Soc. 1979, 101, 4359. doi: 10.1021/ja00509a052
-
[66]
(66) Woodard, R. W.; Tsai, M. D.; Floss, H. G.; Crooks, P. A.; Coward, J. K. J. Biol. Chem. 1980, 255, 9124.
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 5
- 文章访问数: 702
- HTML全文浏览量: 51

下载: