Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules

Bai XUE Tiannan CHEN J. Ilja SIEPMANN

Citation:  XUE Bai, CHEN Tiannan, SIEPMANN J. Ilja. Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules[J]. Acta Physico-Chimica Sinica, 2018, 34(10): 1106-1115. doi: 10.3866/PKU.WHXB201701083 shu

Efficient Calculation of Absorption Spectra in Solution: Approaches for Selecting Representative Solvent Configurations and for Reducing the Number of Explicit Solvent Molecules

    通讯作者: SIEPMANNJ.Ilja, siepmann@umn.edu
摘要: Dye-sensitized solar cells (DSSCs) are one of the most promising renewable energy technologies. Charge transfer and charge transport are pivotal processes in DSSCs, which govern solar energy capture and conversion. These processes can be probed using modern electronic structure methods. Because of the heterogeneity and complexity of the local environment of a chromophore in DSSCs (such as solvatochromism and chromophore aggregation), a part of the solvation environment should be treated explicitly during the calculation. However, because of the high computational cost and unfavorable scaling with the number of electrons of high-level quantum mechanical methods, approaches to explicitly treat the local environment need careful consideration. Two problems must be tackled to reduce computational cost. First, the number of configurations representing the solvent distribution should be limited as much as possible. Second, the size of the explicit region should be kept relatively small. The purpose of this study is to develop efficient computational approaches to select representative configurations and to limit the explicit solvent region to reduce the computational cost for later (higher-level) quantum mechanical calculations. For this purpose, an ensemble of solvent configurations around a 1-methyl-8-oxyquinolinium betaine (QB) dye molecule was generated using Monte Carlo simulations and molecular mechanics force fields. Then, a fitness function was developed using data from inexpensive electronic structure calculations to reduce the number of configurations. Specific solvent molecules were also selected for explicit treatment based on a distance criterion, and those not selected were treated as background charges. The configurations and solvent molecules selected proved to be good representatives of the entire ensemble; thus, expensive electronic structure calculations need to be performed only on this subset of the system, which significantly reduces the computational cost.

English

    1. [1]

      Ladomenou, K.; Kitsopoulos, T. N.; Sharma, G. D.; Coutsolelos, A. G. RSC Adv. 2014, 4, 21379. doi: 10.1039/c4ra00985a

    2. [2]

      Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Prog. Photovolt Res. Appl. 2015, 23, 1. doi: 10.1002/pip.2637

    3. [3]

      Graetzel, M. Nature 2001, 414, 338. doi: 10.1038/35104607.

    4. [4]

      O'Regan, B.; Graetzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0

    5. [5]

      Gong, J.; Liang, J.; Sumathy, K. Renew. Sust. Energ. Rev. 2012, 16, 5848. doi: 10.1016/j.rser.2012.04.044

    6. [6]

      Deing, K. C.; Mayerh ffer, U.; Würthner, F.; Meerholz, K. Phys. Chem. Chem. Phys. 2012, 14, 8328. doi: 10.1039/c2cp40789b

    7. [7]

      Luo, L.; Lin, C. -J.; Tsai, C. -Y.; Wu, H. -P.; Li, L. -L.; Lo, C. -F.; Lin, C. -Y.; Diau, E. W. -G. Phys. Chem. Chem. Phys. 2010, 12, 1064. doi: 10.1039/b919962d

    8. [8]

      Pastore, M.; De Angelis, F. ACS Nano 2010, 4, 556. doi: 10.1021/nn901518s

    9. [9]

      El Seoud, O. A. Pure Appl. Chem. 2007, 79, 1135. doi: 10.1351/pac200779061135

    10. [10]

      Tada, E. B.; Novaki, L. P.; El Seoud, O. A. J. Phys. Org. Chem. 2000, 13, 679. doi: 10.1002/1099-1395(200011)13:11<679::AID-POC299>3.0.CO;2-R

    11. [11]

      Gao, J.; Zhang, J. Z. H.; Houk, K. N. Accounts Chem. Res. 2014, 47, 2711. doi: 10.1021/ar500293u

    12. [12]

      Li, S.; Li, W.; Ma, J. Accounts Chem. Res. 2014, 47, 2712. doi: 10.1021/ar500038z

    13. [13]

      Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; Truhlar, D. G. Accounts Chem. Res. 2014, 47, 2731. doi: 10.1021/ar500068a

    14. [14]

      He, X.; Zhu, T.; Wang, X.; Liu, J.; Zhang, J. Z. H. Accounts Chem. Res. 2014, 47, 2748. doi: 10.1021/ar500077t

    15. [15]

      Coutinho, K.; De Oliveira, M. J.; Canuto, S.Int. J. Quantum Chem. 1998, 66, 249. doi: 10.1002/(SICI)1097-461X(1998)66:3<249::AID-QUA6>3.0.CO;2-V

    16. [16]

      Jaramillo, P.; Pérez, P.; Fuentealba, P.; Canuto, S.; Coutinho, K. J. Phys. Chem. B 2009, 113, 4314. doi: 10.1021/jp808210y

    17. [17]

      Barreto, R. C.; Coutinho, K.; Georg, H. C.; Canuto, S. Phys. Chem. Chem. Phys. 2009, 11, 1388. doi: 10.1039/b816912h

    18. [18]

      Aidas, K.; Kongsted, J.; Osted, A.; Mikkelsen, K. V.; Christiansen, O. J. Phys. Chem. A 2005, 109, 8001. doi: 10.1021/jp0527094

    19. [19]

      Christopher, C. Essentials of Computational Chemistry: Theories and Models; John Wiley & Sons: Chichester, UK, 2013.

    20. [20]

      Masunov, A.; Tretiak, S.; Hong, J. W.; Liu, B.; Bazan, G. C. J. Chem. Phys. 2005, 122, 224505. doi: 10.1063/1.1878732

    21. [21]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2015, 119, 958. doi: 10.1021/jp506293w

    22. [22]

      Murugan, N. A. J. Phys. Chem. B 2011, 115, 1056. doi: 10.1021/jp1049342

    23. [23]

      Wood, W. W.; Parker, F. R. J. Chem. Phys.1957, 27, 720. doi: 10.1063/1.1743822

    24. [24]

      Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1987.

    25. [25]

      Ewald, P. Ann. Phys. 1921, 64, 253. doi: 10.1002/andp.19213690304

    26. [26]

      Maitland, G. C.; Rigby, M.; Smith, E. B.; Wakeham, A. Intermolecular Forces: Their Origin and Determination; Pergamon Press: Oxford, UK, 1987.

    27. [27]

      Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2013, 117, 273. doi: 10.1021/jp307328x

    28. [28]

      Zhang, L.; Siepmann, J. I. Theor. Chem. Acc. 2006, 115, 391. doi: 10.1007/s00214-005-0073-1

    29. [29]

      Marenich, A. V; Olson, R. M.; Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theory Comput. 2007, 3, 2011. doi: 10.1021/ct7001418

    30. [30]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01;Gaussian Inc.: Wallingford, CT, USA, 2013.

    31. [31]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. CM5PAC; Uniersity of Minnesota: Minneapolis, MN, USA, 2011.

    32. [32]

      Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G. J. Chem. Theor. Comput. 2012, 8, 527. doi: 10.1021/ct200866d

    33. [33]

      Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569. doi: 10.1021/jp972543+

    34. [34]

      Wick, C. D.; Stubbs, J. M.; Rai, N.; Siepmann, J. I. J. Phys. Chem. B 2005, 109, 18974. doi: 10.1021/jp0504827

    35. [35]

      Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    36. [36]

      Thompson, M. A.; Zerner, M. C. J. Am. Chem. Soc. 1991, 113, 8210. doi: 10.1021/ja00022a003

    37. [37]

      Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T. J. Am. Chem. Soc. 1980, 102, 589. doi: 10.1021/ja00522a025

    38. [38]

      Hollas, J. M. Modern Spectroscopy; John Wiley & Sons: Chichester, UK, 2004.

    39. [39]

      Voityuk, A. A.; Kummer, A. D.; Michel-Beyerle, M. -E.; Rösch, N. Chem. Phys. 2001, 269, 83. doi: 10.1016/S0301-0104(01)00334-2

    40. [40]

      Lin, Y. L.; Gao, J. J. Chem. Theory Comput. 2007, 3, 1484. doi: 10.1021/ct700058c

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  763
  • HTML全文浏览量:  98
文章相关
  • 发布日期:  2018-10-15
  • 收稿日期:  2017-12-14
  • 接受日期:  2018-01-04
  • 修回日期:  2018-01-03
  • 网络出版日期:  2018-10-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章