碳基纳米酶在生物传感中的应用研究进展

陈怡峰 张钰 焦雷 严红烨 顾文玲 朱成周

引用本文: 陈怡峰, 张钰, 焦雷, 严红烨, 顾文玲, 朱成周. 碳基纳米酶在生物传感中的应用研究进展[J]. 分析化学, 2021, 49(6): 907-921. doi: 10.19756/j.issn.0253-3820.211258 shu
Citation:  CHEN Yi-Feng,  ZHANG Yu,  JIAO Lei,  YAN Hong-Ye,  GU Wen-Ling,  ZHU Cheng-Zhou. Research Progress of Carbon-based Nanozymes for Biosensing[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 907-921. doi: 10.19756/j.issn.0253-3820.211258 shu

碳基纳米酶在生物传感中的应用研究进展

    通讯作者: 朱成周,E-mail:czzhu@mail.ccnu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.22074049,22004042)和中央高校基础科研基金项目(Nos.CCNU20QN007,CCNU20TS013)资助。

摘要: 纳米酶是具有类似于酶催化活性的纳米材料,由于其能够克服天然酶的一些局限性(如稳定性差、成本高和宏量生产困难)而备受关注。碳基纳米酶具有良好的生物相容性、稳定性和易于功能化等优势,表现出良好的应用前景。本文评述了近年来碳基纳米酶的发展历程,初步讨论了碳基纳米酶的催化机理,重点介绍了碳纳米酶、异原子掺杂型碳基纳米酶和金属负载型碳基纳米酶在生物传感方面的应用,并对碳基纳米酶的发展前景进行了展望。

English


    1. [1]

      GARCIAV M, GAO J L, KARPLUS M, TRUHLAR D G. Science, 2004, 303(5655): 186-195.

    2. [2]

      ZHAN Y J, YANG S T, LUO F, GUO L H, ZENG Y B, QIU B, LIN Z Y. ACS Appl. Mater. Interfaces, 2020, 12(27): 30085-30094.

    3. [3]

      SUN D, PANG X, CHENG Y, MING J, XIANG S J, ZHANG C, LV P, CHU C C, CHEN X L, LIU G, ZHENG N F. ACS Nano, 2020, 14(2): 2063-2076.

    4. [4]

      WANG Y M, LIU J W, ADKINS G B, SHEN W, TRINH M P, DUAN L Y, JIANG J H, ZHONG W W. Anal. Chem., 2017, 89(22): 12327-12333.

    5. [5]

      QIN L, WANG X Y, LIU Y F, WEI H. Anal. Chem., 2018, 90(16): 9983-9989.

    6. [6]

      CAO F F, ZHANG L, WANG H, YOU Y W, WANG Y, GAO N, REN J S, QU X G. Angew. Chem., Int. Ed., 2019, 58(45): 16236-16242.

    7. [7]

      GAO L Z, ZHUANG J, NIE L, ZHANG J B, ZHANG Y, GU N, WANG T H, FENG J, YANG D L, PERRETT S, YAN X Y. Nat. Nanotechnol., 2007, 2(9): 577-583.

    8. [8]

      KANG S, GIL Y G, MIN D H, JANG H. ACS Nano, 2020, 14(4): 4383-4394.

    9. [9]

      DENG H H, LUO B Y, HE S B, CHENR T, LIN Z, PENG H P, XIA X H, CHEN W. Anal. Chem., 2019, 91(6): 4039-4046.

    10. [10]

      ZHU Y Y, WU J J X, HAN L J, WANG X Y, LI W, GUO H C, WEI H. Anal. Chem., 2020, 92(11): 7444-7452.

    11. [11]

      DING H, HU B, ZHANG B, ZHANG H, YAN X Y, NIE G H, LIANG M M. Nano Res., 2020, 14: 570-583.

    12. [12]

      KIM M S, CHO S, JOO S H, LEE J, KWAK S K, KIM M I, LEE J. ACS Nano, 2019, 13(4): 4312-4321.

    13. [13]

      WU Y, JIAO L, LUO X, XU W Q, WEI X Q, WANG H J, YAN H Y, GU W L, XU B Z, DU D, LIN Y H, ZHU C Z. Small, 2019, 15(43): e1903108.

    14. [14]

      YANG J, LI K, LI C Z, GU J L. Angew. Chem., Int. Ed., 2020, 59(51): 22952-22956.

    15. [15]

      LI M H, CHEN J X, WU W W, FANG Y X, DONG S J. J. Am. Chem. Soc., 2020, 142(36): 15569-15574.

    16. [16]

      SUN H J, REN J S, QU X G. Springer Singapore: Singapore, 2020: 171-193.

    17. [17]

      DUGAN L L, GABRIELSEN J K, SHAN P Y, LIN T S, CHOI D W. Neurobiol.Dis., 1996, 3(2): 129-135.

    18. [18]

      XIA Y K, LIU M M, WANG L L, YAN A, HE W H, CHEN M, LAN J M, XU J X, GUAN L H, CHEN J H. Biosens. Bioelectron., 2017, 92: 8-15.

    19. [19]

      ZHANG Q Z, ZHAO B, YAN J, SONG S P, MIN R, FAN C H. Anal. Chem., 2011, 83(23): 9191-9196.

    20. [20]

      NIRALA N R, KHANDELWAL G, KUMAR B, VINIT A, PRAKASH R, KUMAR V. Talanta, 2017, 173: 36-43.

    21. [21]

      SUN H J, ZHAO A D, GAO N, LI K, REN J S, QU X G. Angew. Chem., Int. Ed., 2015, 54(24): 7176-7180.

    22. [22]

      MU X Y, HE H, WANG J Y, LONG W, LI Q F, LIU H L, GAO Y L, OUYANG L F, REN Q J, SUN S, WANG J Y, YANG J, LIU Q, SUNY M, LIUC L, ZHANG X D, HU W P. Nano Lett., 2019, 19(7): 4527-4534.

    23. [23]

      FAN Y F, ZHANG W C, LIU Y M, ZENG Z X, QUAN X, ZHAO H M. ACS Appl. Mater. Interfaces, 2019, 11(19): 17467-17474.

    24. [24]

      SONG Y J, WANG X H, ZHAO C, QU K H, REN J S, QU X G. Chem.-Eur. J., 2010, 16(12): 3617-3621.

    25. [25]

      SONG Y J, QU K G, ZHAO C, REN J S, QU X G. Adv. Mater., 2010, 22(19): 2206-2210.

    26. [26]

      HUANG Y Y, LIU C Q, PU F, LIU Z, REN J S, QU X G. Chem. Commun., 2017, 53(21): 3082-3085.

    27. [27]

      FAN K L, XI J Q, FAN L, WANG P X, ZHU C H, TANG Y, XU X D, LIANG M M, JIANG B, YAN X Y, GAO L Z. Nat. Commun., 2018, 9(1): 1440.

    28. [28]

      WU Y, WU J B, JIAO L, XU W Q, WANG H J, WEI X Q, GU W L, REN G X, ZHANG N, ZHANG Q H, HUANG L, GU L, ZHU C Z. Anal. Chem., 2020, 92(4): 3373-3379.

    29. [29]

      WU W W, HUANG L, WANG E K, DONG S J. Chem. Sci., 2020, 11(36): 9741-9756.

    30. [30]

      HUANG L, CHEN J X, GAN L F, WANG J, DONG S J. Sci. Adv., 2019, 5(5): eaav5490.

    31. [31]

      LOU Z, ZHAO S, WANG Q, WEI H. Anal. Chem., 2019, 91(23): 15267-15274.

    32. [32]

      CHEN Y F, JIAO L, YAN H Y, XU W Q, WU Y, WANG H J, GU W L, ZHU C Z. Anal. Chem., 2020, 92(19): 13518-13524.

    33. [33]

      LIANG Q, XI J, GAO X J J, ZHANG R F, YANG Y L, GAO X F, YAN X Y, GAO L Z, FAN K L. Nano Today, 2020, 35: 100935.

    34. [34]

      DUGAN L L, TURETSKY D M, DU C, LOBNER D, WHEELER M, ALMLI C R, SHEN C K F, LUH T Y, CHOI D W, LIN T S. Proc. Natl. Acad. Sci. U. S.A., 1997, 94(17): 9434-9439.

    35. [35]

      SONG Y J, WANG X H, ZHAO C, QU K G, REN J S, QU X G. Chem.-Eur. J., 2010, 16(12): 3617-3621.

    36. [36]

      CUI R J, HAN Z D, ZHU J J. Chem.-Eur. J., 2011, 17(34): 9377-9384.

    37. [37]

      GAYATHRI P, KUMAR A S. Chem.-Eur. J., 2013, 19(50): 17103-17112.

    38. [38]

      SHI W B, WANG Q L, LONG Y J, CHENG Z L, CHEN S H, ZHENG H Z, HUANG Y M. Chem. Commun., 2011, 47(23): 6695-6697.

    39. [39]

      MIAO P, HAN K, TANG Y G, WANG B D, LIN T, CHENG W B. Nanoscale, 2015, 7(5): 1586-1595.

    40. [40]

      GARG B, BISHT T. Molecules, 2016, 21(12): 1653.

    41. [41]

      LI F, LI T Y, SUN C X, XIA J H, JIAO Y, Xu H P. Angew. Chem., Int. Ed., 2017, 56(33): 9910-9914.

    42. [42]

      YAN D F, LI Y X, HUO J, CHEN R, DAI L M, WANG S Y. Adv. Mater., 2017, 29(48): 1606459.

    43. [43]

      GAO K, WANG B, TAO L, CUNNING B V, ZHANG Z P, WANG S Y, RUOFF R S, QU L T. Adv. Mater., 2019, 31(13): e1805121.

    44. [44]

      LI S, ZHAO X T, GANG R T, CAO B Q, WANG H. Anal. Chem., 2020, 92(7): 5152-5157.

    45. [45]

      YAN H Y, WANG L Z, CHEN Y F, JIAO L, WU Y, XU W Q, GU W L, SONG W Y, DU D, ZHU C Z. Research, 2020, 2020: 1-11.

    46. [46]

      TRIPATHI K M, AHN H T, CHUNG M, LE X A, SAINI D, BHATI A, SONKAR S K, KIM M I, KIM T Y. ACS Biomater. Sci. Eng., 2020, 6(10): 5527-5537.

    47. [47]

      SONG H Y, MA C L, WANG L, ZHU Z G. Nanoscale, 2020, 12: 19284-19292.

    48. [48]

      AHMED S R, TAKEMEURA K, LI T C, KITAMOTO N, TANAKA T, SUZUKI T, PARK E Y. Biosens. Bioelectron., 2017, 87: 558-565.

    49. [49]

      ZHANG S T, ZHANG D X, ZHANG X H, SHANG D H, XUE Z H, SHAN D L, LU X Q. Anal. Chem., 2017, 89(6): 3538-3544.

    50. [50]

      ZHAN L, LI C M, WU W B, HUANG C Z. Chem. Commun., 2014, 50(78): 11526-11528.

    51. [51]

      DARABDHARA G, SHARMA B, DAS M R, BOUKHERROB R, SZUNERITS S. Sens. Actuators, B, 2017, 238: 842-851.

    52. [52]

      ZUO X L, PENG C, HUANG Q, SONG S P, WANG L H, LI D, FAN C H. Nano Res., 2009, 2(8): 617-623.

    53. [53]

      TAN H L, MA C J, GAO L, LI Q, SONG Y H, XU F G, WANG T, WANG L. Chem.-Eur. J., 2014, 20(49): 16377-16383.

    54. [54]

      LIN X Q, DENG H H, WU G W, PENG H P, LIU A L, LIN X H, XIA X H, CHEN W. Analyst, 2015, 140(15): 5251-5256.

    55. [55]

      TAO Y, LIN Y H, HUANG Z Z, REN J S, QU X G. Adv.Mater., 2013, 25(18): 2594-2599.

    56. [56]

      YUAN F, ZHAO H M, ZANG H M, YE F, QUAN X. ACS Appl. Mater. Interfaces, 2016, 8(15): 9855-9864.

    57. [57]

      JIAO L, YAN H Y, WU Y, GU W L, ZHU C Z, DU D, LIN Y H. Angew. Chem., Int. Ed., 2020, 59(7): 2565-2576.

    58. [58]

      CHENG N, LI J C, LIU, LIN Y H, DU D. Small, 2019, 15(48): e1901485.

    59. [59]

      JIANG Z L, SUN W M, SHANG H S, CHEN W X, SUN T T, LI H J, DONG J C, ZHOU J, LI Z, WANG Y, CAO R, SARANGI R, YANG Z K, WANG D S, ZHANG J T, LI Y D. Energy Environ. Sci., 2019, 12(12): 3508-3514.

    60. [60]

      GUO Y J, DENG L, LI J, GUO S J, WANG E K, DONG S J. ACS Nano, 2011, 5(2): 1282-1290.

    61. [61]

      JIAO L, XU W Q, YAN H Y, WU Y, LIU C R, DU D, LIN Y H, ZHU C Z. Anal. Chem., 2019, 91(18): 11994-11999.

    62. [62]

      JIAO L, WU J B, ZHONG H, ZHANG Y, XU W Q, WU Y, CHEN Y F, YAN H Y, ZHANG Q H, GU W L, GU L, BECKMAN S P, HUANG L, ZHU C Z. ACS Catal., 2020, 10(11): 6422-6429.

    63. [63]

      WANG Y, JIA G R, CUI X Q, ZHAO X, ZHANG Q H, GU L, ZHENG L R, LI LH, WU Q, SINGH D J, MATSUMURA D, TSUJI T, CUI Y T, ZHAO J X, ZHENG W T. Chem., 2021, 7(2): 436-449.

    64. [64]

      JIAO L, XU W Q, ZHANG Y, WU Y, GU W L, GE X X, CHEN B B, ZHU C Z, GUO S J. Nano Today, 2020, 35: 100971.

    65. [65]

      SUN H J, GAO N, DONG K, REN J S, QU X G. ACS Nano, 2014, 8(6): 6202-6210.

    66. [66]

      HU Y H, GAO X J J, ZHU Y Y, MUHAMMAD F, TAN S H, CAO W, LIN S C, JIN Z, GAO X F, WEI H. Chem. Mater., 2018, 30(18): 6431-6439.

    67. [67]

      ZHAO R S, ZHAO X, GAO X F. Chem.-Eur. J., 2015, 21(3): 960-964.

    68. [68]

      WANG D, SONG X L, LI P, GAO X J, GAO X F. J. Mater. Chem. B, 2020, 8(39): 9028-9034.

    69. [69]

      ZHENG A X, CONG Z X, WANG J R, LI J, YANG H H, CHEN G N. Biosens. Bioelectron., 2013, 49: 519-524.

    70. [70]

      WANG Z B, LV X C, WENG J. Carbon, 2013, 62: 51-60.

    71. [71]

      LIN L P, SONG X H, CHEN Y Y, RONG M C, ZHAO T T, WANG Y R, JIANG Y Q, CHEN X. Anal. Chim. Acta, 2015, 869: 89-95.

    72. [72]

      QIAO F M, Qi Q Q, WANG Z Z, XU K, AI S Y. Sens. Actuators, B, 2016, 229: 379-386.

    73. [73]

      CHEN J, CHEN Q, CHEN J Y, QIU H D. Microchim. Acta, 2016, 183(12): 3191-3199.

    74. [74]

      DONG Y L, ZHANG H G, RAHMAN Z U, SU L, CHEN X J, HU J, CHEN X G. Nanoscale, 2012, 4(13): 3969-3976.

    75. [75]

      WANG H, LI S, SI Y M, SUN Z Z, LI S Y, LIN Y H. J. Mater. Chem. B, 2014, 2(28): 4442-4448.

    76. [76]

      ZHENG X J, ZHU Q, SONG H Q, ZHAO X R, YI T, CHEN H L, CHEN X G. ACS Appl. Mater. Interfaces, 2015, 7(6): 3480-3491.

    77. [77]

      LU N, ZHANG M, DING L, ZHENG J, ZENG C X, WEN Y L, LIU G, ALDALBAHI A, SHI J Y, SONG S P, ZUO X L, WANG L H. Nanoscale, 2017, 9(13): 4508-4515.

    78. [78]

      XIE J X, CAO H Y, JIANG H, CHEN Y J, SHI W B, ZHENG H Z, HUANG Y M. Anal. Chim. Acta, 2013, 796: 92-100.

    79. [79]

      ZHANG L, HAI X, XIA C, CHEN X W, WANG J H. Sens. Actuators, B, 2017, 248: 374-384.

    80. [80]

      TIAN X K, WANG X, DAI C, LI Y, YANG C, ZHOU Z X, WANG Y X. Sens. Actuators, B, 2017, 245: 221-229.

    81. [81]

      PENG J, WENG J. Biosens. Bioelectron., 2017, 89: 652-658.

    82. [82]

      CHEN X M, SU B Y, CAI Z X, CHEN X, OYAMA M. Sens. Actuators, B, 2014, 201: 286-292.

    83. [83]

      ZHANG X H, WU G H, CAI Z X, CHEN X. Talanta, 2015, 134: 132-135.

    84. [84]

      GUO Y J, LI J, DONG S J. Sens. Actuators, B, 2011, 160(1): 295-300.

    85. [85]

      ZHANG R Z, HE S J, ZHANG C M, CHEN W. J. Mater. Chem. B, 2015, 3(20): 4146-4154.

    86. [86]

      KIM M S, LEE J, KIM H S, CHO A, SHIM K H, LE T N, AN S S A, HAN J W, KIM M, LEE J. Adv. Funct. Mater., 2019, 30(1): 1905410.

    87. [87]

      SONG Y J, QU K F, ZHAO C, REN J S, QU X G. Adv. Mater., 2010, 22(19): 2206-2210.

    88. [88]

      WANG B, CHEN Y F, WU Y Y, WENG B, LIU Y S, LI C M. Microchim. Acta, 2016, 183(9): 2491-2500.

    89. [89]

      SHAMSIPUR M, SAFAVI A, MOHMMADPOUR Z. Sens. Actuators, B, 2014, 199: 463-469.

    90. [90]

      MA Y, ZHAO M G, CAI B, WANG W, YE Z Z, HUANG J Y. Chem. Commun., 2014, 50(76): 11135-11138.

    91. [91]

      KIM M, KIM M S, WOO M A, YE Y J, KANG K S, LEE J, PARK H G. Nanoscale, 2014, 6(3): 1529-1536.

    92. [92]

      JIA H M, YANG D F, HAN X G, CAI J H, LIU H Y, HE W W. Nanoscale, 2016, 8(11): 5938-5945.

    93. [93]

      QIAN J, YANG X W, JIANG L, ZHU C D, MAO H P, WANG K. Sens. Actuators, B, 2014, 201: 160-166.

    94. [94]

      QIAN J, YANG X W, YANG Z T, ZHU G B, MAO H P, WANG K. J. Mater. Chem. B, 2015, 3(8): 1624-1632.

    95. [95]

      NIRALA N R, ABRAHAM S, KUMAR V, BANSAL A, SRIVASTAVA A, SAXENA P S. Sens. Actuators, B, 2015, 218: 42-50.

    96. [96]

      HAYAT A, HAIDER W, RAZA Y, MARTY J L. Talanta, 2015, 143: 157-161.

    97. [97]

      HE Y F, NIU X H, SHI L B, ZHAO H L, LI X, ZHANG W C, PAN J M, ZHANG X F, YAN Y S, LAN M B. Microchim. Acta, 2017, 184(7): 2181-2189.

    98. [98]

      LIU W D, CHU L, ZHANG C H, NI P J, JIANG Y Y, WANG B, LU Y Z, CHEN C X. Chem.-Eng. J., 2021, 415: 128876.

    99. [99]

      LYU Z Y, DING S C, ZHANG N, ZHOU Y, CHENG N, WANG M Y, XU M J, FENG Z X, NIU X H, CHENG Y, ZHANG C, DU D, LIN Y H. Research, 2020, 2020: 4724505.

    100. [100]

      YANG W Q, HUANG T T, ZHAO M M, LUO F, WENG W, WEI Q H, LIN Z Y, CHEN G N. Talanta, 2017, 164: 1-6.

    101. [101]

      RUAN X F, LIU D, NIU X H, WANG Y J, SIMPSON C D, CHENG N, DU D, LIN Y H. Anal. Chem., 2019, 91(21): 13847-13854.

    102. [102]

      KIM M, YE Y J, WOO M A, LEE J, PARK H G. Adv. Health. Mater., 2014, 3(1): 36-41.

    103. [103]

      ZHANG L N, DENG H H, LIN FL, XU X W, WENG S H, LIU A L, LIN X H, XIA X H, CHEN W. Anal. Chem., 2014, 86(5): 2711-2718.

    104. [104]

      MAJI S K, MANDAL A K, NGUYEN K T, BORAH P, ZHAO Y L. ACS Appl. Mater. Interfaces, 2015, 7(18): 9807-9816.

    105. [105]

      SONG Y J, CHEN Y, FENG L Y, REN J S, QU X G. Chem. Commun., 2011, 47(15): 4436-4438.

    106. [106]

      LIU J, CUI M R, NIU L, ZHOU H, ZHANG S S. Chem.-Eur. J., 2016, 22(50): 17873-17873.

  • 加载中
计量
  • PDF下载量:  32
  • 文章访问数:  1602
  • HTML全文浏览量:  324
文章相关
  • 收稿日期:  2021-03-28
  • 修回日期:  2021-04-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章