基质辅助激光解吸电离飞行时间质谱法用于非极性聚合物的分析

李仕诚 李明慧 陈子龙 朱新海

引用本文: 李仕诚, 李明慧, 陈子龙, 朱新海. 基质辅助激光解吸电离飞行时间质谱法用于非极性聚合物的分析[J]. 分析化学, 2022, 50(1): 82-91. doi: 10.19756/j.issn.0253-3820.210593 shu
Citation:  LI Shi-Cheng,  LI Ming-Hui,  CHEN Zi-Long,  ZHU Xin-Hai. Analysis of Nonpolar Polymers by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(1): 82-91. doi: 10.19756/j.issn.0253-3820.210593 shu

基质辅助激光解吸电离飞行时间质谱法用于非极性聚合物的分析

    通讯作者: 朱新海,E-mail:zhuxinh@mail.sysu.edu.cn
摘要: 对基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)分析非极性聚合物时离子化试剂对测试结果的影响进行了研究。通过对比,选择反式-2-[3-(4-叔丁基苯基)-2-甲基-亚丙烯基]丙二腈(DCTB)为基质,以聚丁二烯(PB5000)、不同聚合度的聚苯乙烯(PS)、聚乙烯(PE2000)为样品,考察了9种铜盐的促离子化作用。结果表明,在相同的仪器测试条件下,Cu (NO32作为离子化试剂对3类非极性聚合物的分析均能获得具有最佳信号强度和分辨率的质谱图。以PB5000为分析对象,利用冷场扫描电子显微镜(SEM)进行分析,结果表明,相比于其它铜盐,Cu (NO32与PB5000、DCTB混合干燥后可得到更均匀的样品结晶。以DCTB为基质,Cu (NO32为阳离子化试剂,利用薄层色谱-基质辅助激光解吸电离飞行时间质谱(TLC-MALDI-TOF MS)联用技术,可以显著降低易于离子化的小分子盐(碘化钠)或其它聚合物(聚乙二醇)等杂质在MALDI-TOF MS分析时的离子抑制作用,实现了对杂质掺杂的聚合物PB5000和PS4000的有效分析。本方法速度快、成本低、操作简便,为低纯度非极性聚合物的MALDI-TOF MS分析提供了有效的解决方案。

English


    1. [1]

      KOICHI T, HIROAKI W, YUTAKA I, SATOSHI A, YOSHIKAZU Y, TAMIO Y. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.KOICHI T, HIROAKI W, YUTAKA I, SATOSHI A, YOSHIKAZU Y, TAMIO Y. Rapid Commun. Mass Spectrom., 1988, 2(8):151-153.

    2. [2]

      MICHAEL K, FRANZ H. Anal. Chem., 1988, 60(20):2299-2301.MICHAEL K, FRANZ H. Anal. Chem., 1988, 60(20):2299-2301.

    3. [3]

      NICOLARDI S, KILGOUR D P A, DOLEZAL N, DRIJFHOUT J W, WUHRER M, BURGT Y E M V D. Anal. Chem., 2020, 92(8):5871-5881.NICOLARDI S, KILGOUR D P A, DOLEZAL N, DRIJFHOUT J W, WUHRER M, BURGT Y E M V D. Anal. Chem., 2020, 92(8):5871-5881.

    4. [4]

      DENG Wen-Chan, HAN Guo-Bin, LI Yuan-Fang, HUANG Cheng-Zhi. Chin. J. Anal. Chem., 2018, 46(2):165-169. 邓文婵, 韩国斌, 李原芳, 黄承志. 分析化学, 2018, 46(2):165-169.

    5. [5]

      ZHAO X Y, HUANG Y, MA G, LIU Y Q, GUO C, HE Q, WANG H W, LIAO J C, PAN Y J. Anal. Chem., 2020, 92(1):991-998.ZHAO X Y, HUANG Y, MA G, LIU Y Q, GUO C, HE Q, WANG H W, LIAO J C, PAN Y J. Anal. Chem., 2020, 92(1):991-998.

    6. [6]

      CHU Jian, JIA Tian-Yuan, GONG Zhong-Ying, DONG Chen-Ying, ZHOU Da-Wei. Chin. J. Anal. Chem., 2020, 48(8):1096-1103. 储健, 贾添元, 拱忠影, 董晨影, 周大炜. 分析化学, 2020, 48(8):1096-1103.

    7. [7]

      RYBICKA M, MILOSZ E, BIELAWSKI K P. Viruses, 2021, 13(5):730.RYBICKA M, MILOSZ E, BIELAWSKI K P. Viruses, 2021, 13(5):730.

    8. [8]

      TRAN A, WAN L T, XU Z B, HARO J M, LI B, JONES J W. J. Am. Soc. Mass Spectrom., 2021, 32(1):289-300.TRAN A, WAN L T, XU Z B, HARO J M, LI B, JONES J W. J. Am. Soc. Mass Spectrom., 2021, 32(1):289-300.

    9. [9]

      ZHAO Yue-Zhen, XU Yang, GONG Can, JU Yu-Rui, LIU Zhao-Xin, XU Xu. Chin. J. Anal. Chem., 2021,49(1):103-112. 赵玥祯, 徐杨, 龚灿, 鞠钰蕊, 刘兆鑫, 许旭. 分析化学, 2021, 49(1):103-112.

    10. [10]

      DRZEZDZON J, JACEWICZ D, SIELICKA A, CHMURZYNSKI L. TrAC-Trends Anal. Chem., 2019, 115:121-128.DRZEZDZON J, JACEWICZ D, SIELICKA A, CHMURZYNSKI L. TrAC-Trends Anal. Chem., 2019, 115:121-128.

    11. [11]

      NIELEN M W F. Mass Spectrom. Rev., 1999, 18(5):309-344.NIELEN M W F. Mass Spectrom. Rev., 1999, 18(5):309-344.

    12. [12]

      METTERNICH J B, CZAR M F, MIRABELLI M F, BARTOLOMEO G L, ZOUBOULIS K C M, ZENOBI R.J. Am. Soc. Mass Spectrom., 2019, 30(11):2392-2397.METTERNICH J B, CZAR M F, MIRABELLI M F, BARTOLOMEO G L, ZOUBOULIS K C M, ZENOBI R.J. Am. Soc. Mass Spectrom., 2019, 30(11):2392-2397.

    13. [13]

      CHEN R, YALCIN T, WALLACE W E, GUTTMAN C M, LI L. J. Am. Soc. Mass Spectrom., 2001, 12(11):1186-1192.CHEN R, YALCIN T, WALLACE W E, GUTTMAN C M, LI L. J. Am. Soc. Mass Spectrom., 2001, 12(11):1186-1192.

    14. [14]

      BRANDT H, EHMANN T, OTTO M. Rapid Commun. Mass Spectrom., 2010, 24(16):2439-2444.BRANDT H, EHMANN T, OTTO M. Rapid Commun. Mass Spectrom., 2010, 24(16):2439-2444.

    15. [15]

      GABRIEL S J, STEINHOFF R F, PABST M, SCHWARZINGER C, ZENOBI R, PANNE U, WEIDNER S M. Rapid Commun. Mass Spectrom., 2015, 29(11):1039-1046.GABRIEL S J, STEINHOFF R F, PABST M, SCHWARZINGER C, ZENOBI R, PANNE U, WEIDNER S M. Rapid Commun. Mass Spectrom., 2015, 29(11):1039-1046.

    16. [16]

      TINTARU A, CHENDO C, PHAN T N T, ROLLET M, GIORDANO L, VIEL S, GIGMES D, CHARLES L. Anal. Chem., 2013, 85(11):5454-5462.TINTARU A, CHENDO C, PHAN T N T, ROLLET M, GIORDANO L, VIEL S, GIGMES D, CHARLES L. Anal. Chem., 2013, 85(11):5454-5462.

    17. [17]

      WU P F, TANG Y Y, CAO G D, LI J P, WANG S Q, CHANG X Y, DANG M, JIN H B, ZHENG C M, CAI Z W. Anal. Chem., 2020, 92(21):14346-14356.WU P F, TANG Y Y, CAO G D, LI J P, WANG S Q, CHANG X Y, DANG M, JIN H B, ZHENG C M, CAI Z W. Anal. Chem., 2020, 92(21):14346-14356.

    18. [18]

      JABER A J, WILKINS C L. J. Am. Soc. Mass Spectrom., 2005, 16(12):2009-2016.JABER A J, WILKINS C L. J. Am. Soc. Mass Spectrom., 2005, 16(12):2009-2016.

    19. [19]

      GROLLIER K, VU N D, ONIDA K, AKHDAR A, NORSIC S, D'AGOSTO F, BOISSON C, DUGUET N. Adv. Synt. Catal., 2020, 362(8):1696-1705.GROLLIER K, VU N D, ONIDA K, AKHDAR A, NORSIC S, D'AGOSTO F, BOISSON C, DUGUET N. Adv. Synt. Catal., 2020, 362(8):1696-1705.

    20. [20]

      STAUDT B H, WAGNER J, VANA P. Macromolecules (Washington, DC, United States), 2018, 51(21):8469-8476.STAUDT B H, WAGNER J, VANA P. Macromolecules (Washington, DC, United States), 2018, 51(21):8469-8476.

    21. [21]

      MOSCATO B, LANDIS C. Chem. Commun., 2008, (44):5785-5787.MOSCATO B, LANDIS C. Chem. Commun., 2008, (44):5785-5787.

    22. [22]

      WALLACE W E, BLAIR W R. Int. J. Mass Spectrom., 2007, 263(1):82-87.WALLACE W E, BLAIR W R. Int. J. Mass Spectrom., 2007, 263(1):82-87.

    23. [23]

      ALLGAIER J, MARTIN K, RAEDER H J, MUELLEN K. Macromolecules, 1999, 32(10):3190-3194.ALLGAIER J, MARTIN K, RAEDER H J, MUELLEN K. Macromolecules, 1999, 32(10):3190-3194.

    24. [24]

      KONA B, WEIDNER S M, FRIEDRICH J F. Int. J. Polym. Anal. Charact., 2005, 10(1-2):85-108.KONA B, WEIDNER S M, FRIEDRICH J F. Int. J. Polym. Anal. Charact., 2005, 10(1-2):85-108.

    25. [25]

      YALCIN T, SCHRIEMER D C, LI L. J. Am. Soc. Mass Spectrom., 1997, 8(12):1220-1229.YALCIN T, SCHRIEMER D C, LI L. J. Am. Soc. Mass Spectrom., 1997, 8(12):1220-1229.

    26. [26]

      BYRD H C M, LIN-GIBSON S, BENCHERIF S, VANDERHART D L, BEERS K L, BAUER B J, FANCONI B M, GUTTMAN C M, WALLACE W E. PMSE Preprints, 2003, 88:80-81.BYRD H C M, LIN-GIBSON S, BENCHERIF S, VANDERHART D L, BEERS K L, BAUER B J, FANCONI B M, GUTTMAN C M, WALLACE W E. PMSE Preprints, 2003, 88:80-81.

    27. [27]

      YANG S H, HE J. Polym. Chem., 2016, 7(27):4506-4514.YANG S H, HE J. Polym. Chem., 2016, 7(27):4506-4514.

    28. [28]

      STRAESSLER N A, LI P, PARRY S A, COLEMAN D W, KILLPACK M O, WRIGHT M E. J. Appl. Polym. Sci., 2012, 123(2):691-698.STRAESSLER N A, LI P, PARRY S A, COLEMAN D W, KILLPACK M O, WRIGHT M E. J. Appl. Polym. Sci., 2012, 123(2):691-698.

    29. [29]

      QUIRK R P, GUO Y, WESDEMIOTIS C, ARNOULD M A. J. Polym. Sci., Part A:Polym. Chem., 2003,41(16):2435-2453.QUIRK R P, GUO Y, WESDEMIOTIS C, ARNOULD M A. J. Polym. Sci., Part A:Polym. Chem., 2003,41(16):2435-2453.

    30. [30]

      ZHENG J, LIN Y C, LIU F, TAN H Y, WANG Y H, TANG T. Chem.-Eur. J., 2013, 19(2):541-548.ZHENG J, LIN Y C, LIU F, TAN H Y, WANG Y H, TANG T. Chem.-Eur. J., 2013, 19(2):541-548.

    31. [31]

      MACHA S F, LIMBACh P A, SAVICKAS P J. J. Am. Soc. Mass Spectrom., 2000, 11(8):731-737.MACHA S F, LIMBACh P A, SAVICKAS P J. J. Am. Soc. Mass Spectrom., 2000, 11(8):731-737.

    32. [32]

      BELU A M, DESIMONE J M, LINTON R W, LANGE G W, FRIEDMAN R M. J. Am. Soc. Mass Spectrom., 1996, 7(1):11-24.BELU A M, DESIMONE J M, LINTON R W, LANGE G W, FRIEDMAN R M. J. Am. Soc. Mass Spectrom., 1996, 7(1):11-24.

    33. [33]

      WYATT M F, STEIN B K, BRENTON A G. Anal. Chem., 2006, 78(1):199-206.WYATT M F, STEIN B K, BRENTON A G. Anal. Chem., 2006, 78(1):199-206.

    34. [34]

      VASIL'EV Y V, KHVOSTENKO O G, STRELETSKII A V, BOLTALINA O V, KOTSIRIS S G, DREWELLO T. J. Phys. Chem. A, 2006, 110(18):5967-5972.VASIL'EV Y V, KHVOSTENKO O G, STRELETSKII A V, BOLTALINA O V, KOTSIRIS S G, DREWELLO T. J. Phys. Chem. A, 2006, 110(18):5967-5972.

    35. [35]

      MACHA S F, LIMBACH P A, HANTON S D, OWENS K G. J. Am. Soc. Mass Spectrom., 2001, 12(6):732-743.MACHA S F, LIMBACH P A, HANTON S D, OWENS K G. J. Am. Soc. Mass Spectrom., 2001, 12(6):732-743.

    36. [36]

      RASHIDEZADEH H, GUO B. J. Am. Soc. Mass Spectrom., 1998, 9(7):724-730.RASHIDEZADEH H, GUO B. J. Am. Soc. Mass Spectrom., 1998, 9(7):724-730.

    37. [37]

      WONG C K L, CHAN T W D. Rapid Commun. Mass Spectrom., 1997, 11(5):513-519.WONG C K L, CHAN T W D. Rapid Commun. Mass Spectrom., 1997, 11(5):513-519.

    38. [38]

      CHOI S S, HA S H. Macromol. Res., 2008, 16(2):108-112.CHOI S S, HA S H. Macromol. Res., 2008, 16(2):108-112.

    39. [39]

      LOU X W, DE WAAL B F M, MILROY L G, VAN DONGEN J L. J. Mass Spectrom., 2015, 50(5):766-770.LOU X W, DE WAAL B F M, MILROY L G, VAN DONGEN J L. J. Mass Spectrom., 2015, 50(5):766-770.

    40. [40]

      FUCHS B. J. Chromatogr. A, 2012, 1259:62-73.FUCHS B. J. Chromatogr. A, 2012, 1259:62-73.

    41. [41]

      KUCHERENKO E, KANATEVA A, PIROGOV A, KURGANOV A. J. Sep. Sci., 2019, 42(1):415-430.KUCHERENKO E, KANATEVA A, PIROGOV A, KURGANOV A. J. Sep. Sci., 2019, 42(1):415-430.

    42. [42]

      MERNIE E G, TOLESA L D, LEE M J, TSENG M C, CHEN Y J. Anal. Chem., 2019, 91(18):11544-11552.MERNIE E G, TOLESA L D, LEE M J, TSENG M C, CHEN Y J. Anal. Chem., 2019, 91(18):11544-11552.

    43. [43]

      NAYAK T, MANDAL S M, NEOG K, GHOSH A K. Int. J. Pept. Res. Ther., 2018, 24(2):337-346.NAYAK T, MANDAL S M, NEOG K, GHOSH A K. Int. J. Pept. Res. Ther., 2018, 24(2):337-346.

    44. [44]

      LOPALCO P, VITALE R, CHO Y S, TOTARO P, CORCELLI A, LOBASSO S. Front. Physiol., 2019, 10:1344.LOPALCO P, VITALE R, CHO Y S, TOTARO P, CORCELLI A, LOBASSO S. Front. Physiol., 2019, 10:1344.

    45. [45]

      ESPARZA C, POLOVKOV N Y, TOPOLYAN A P, BORISOV R S, ZAIKIN V G. J.Chromatogr. A, 2020, 1626:461335.ESPARZA C, POLOVKOV N Y, TOPOLYAN A P, BORISOV R S, ZAIKIN V G. J.Chromatogr. A, 2020, 1626:461335.

    46. [46]

      FOUGERE L, SILVA D D, DESTANDAU E, ELFAKIR C. Phytochem. Anal., 2019, 30(2):218-225.FOUGERE L, SILVA D D, DESTANDAU E, ELFAKIR C. Phytochem. Anal., 2019, 30(2):218-225.

    47. [47]

      HLEBA L, CHAROUSOVA I, CISAROVA M, KOVACIK A, KORMANEC J, MEDO J, BOZIK M, JAVOREKOVA S. J. Environ. Sci. Health, Part A:Toxic/Hazard. Subst. Environ. Eng., 2018, 53(12):1083-1093.HLEBA L, CHAROUSOVA I, CISAROVA M, KOVACIK A, KORMANEC J, MEDO J, BOZIK M, JAVOREKOVA S. J. Environ. Sci. Health, Part A:Toxic/Hazard. Subst. Environ. Eng., 2018, 53(12):1083-1093.

    48. [48]

      JI H N, SATO N, NONIDEZ W K, MAYS J W. Polymer, 2002, 43(25):7119-7123.JI H N, SATO N, NONIDEZ W K, MAYS J W. Polymer, 2002, 43(25):7119-7123.

    49. [49]

      WATANABE T, KAWASAKI H, KIMOTO T, ARAKAWA R. Rapid Commun. Mass Spectrom., 2007, 21(5):787-791.WATANABE T, KAWASAKI H, KIMOTO T, ARAKAWA R. Rapid Commun. Mass Spectrom., 2007, 21(5):787-791.

    50. [50]

      LERICHE E D, HUBERT-ROUX M, GROSSEL M C, LANGE C M, AFONSO C, LOUTELIER-BOURHIS C. Anal. Chim. Acta, 2014, 808:144-150.LERICHE E D, HUBERT-ROUX M, GROSSEL M C, LANGE C M, AFONSO C, LOUTELIER-BOURHIS C. Anal. Chim. Acta, 2014, 808:144-150.

    51. [51]

      KOOIJMAN P C, KOK S J, WEUSTEN J J A M, HONING M. Anal. Chim. Acta, 2016, 919:1-10.KOOIJMAN P C, KOK S J, WEUSTEN J J A M, HONING M. Anal. Chim. Acta, 2016, 919:1-10.

  • 加载中
计量
  • PDF下载量:  12
  • 文章访问数:  1032
  • HTML全文浏览量:  133
文章相关
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-11-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章