一种CoNi2S4超级电容器电极材料的制备及其性能研究

范嘉敏 弓巧娟 巩鹏妮 赵晓燕

引用本文: 范嘉敏, 弓巧娟, 巩鹏妮, 赵晓燕. 一种CoNi2S4超级电容器电极材料的制备及其性能研究[J]. 分析化学, 2022, 50(1): 119-126. doi: 10.19756/j.issn.0253-3820.210524 shu
Citation:  FAN Jia-Min,  GONG Qiao-Juan,  GONG Peng-Ni,  ZHAO Xiao-Yan. Preparation and Properties of CoNi2S4 for Supercapacitor Electrode Material[J]. Chinese Journal of Analytical Chemistry, 2022, 50(1): 119-126. doi: 10.19756/j.issn.0253-3820.210524 shu

一种CoNi2S4超级电容器电极材料的制备及其性能研究

    通讯作者: 弓巧娟,E-mail:gqjuan@163.com
  • 基金项目:

    山西省重点研发项目(No.201803D121030)资助。

摘要: 金属硫化物材料因其高电导率和良好的电化学性能常被用做超级电容器电极材料。本研究采用简单高效的一步溶剂热法,以乙二醇为溶剂制备了一种CoNi2S4材料,其形状类似西兰花花冠,为均匀的纳米小颗粒,在进行法拉第氧化还原反应时,存在多种离子的协同作用。三电极测试结果表明,CoNi2S4材料具有良好的循环稳定性和非常优异的充放电性能,电流密度为1 A/g时,比电容为2537 F/g,循环5000次后,比电容保持率为88.2%,与CoS相比具有更大的比电容和更出色的电化学性能。分别以CoNi2S4与活性炭(AC)为正负极材料组装的CoNi2S4//AC不对称超级电容器在功率密度为375 Wh/kg时,能量密度高达52.3 W/kg,循环5000次后,比电容保持率为75.8%,表明制备的CoNi2S4是一种性能优异的超级电容器电极材料。

English


    1. [1]

      XU X J, LIU J, LIU Z B, SHEN J D, HU R Z, LIU J W, OUYANG L Z, ZHANG L, ZHU M. ACS Nano, 2017, 11(9):9033-9040.XU X J, LIU J, LIU Z B, SHEN J D, HU R Z, LIU J W, OUYANG L Z, ZHANG L, ZHU M. ACS Nano, 2017, 11(9):9033-9040.

    2. [2]

      MIAO P H, HE J, SANG Z Y, ZHANG F R, GUO J D, SU D, YAN X, LI X L, JI H M. J. Alloys Compd., 2018, 732:613-623.MIAO P H, HE J, SANG Z Y, ZHANG F R, GUO J D, SU D, YAN X, LI X L, JI H M. J. Alloys Compd., 2018, 732:613-623.

    3. [3]

      LOKHANDE V C, LOKHANDE A C, LOKHANDE C D, KIM J H, JI T. J. Alloys Compd., 2016, 682:381-403.LOKHANDE V C, LOKHANDE A C, LOKHANDE C D, KIM J H, JI T. J. Alloys Compd., 2016, 682:381-403.

    4. [4]

      WANG Z L. Nano Today, 2010, 5(6):540-552.WANG Z L. Nano Today, 2010, 5(6):540-552.

    5. [5]

      GONZÁLEZ A, GOIKOLEA E, BARRENA J A, MYSYK R. Renewable Sustainable Energy Rev., 2016, 58:1189-1206.GONZÁLEZ A, GOIKOLEA E, BARRENA J A, MYSYK R. Renewable Sustainable Energy Rev., 2016, 58:1189-1206.

    6. [6]

      LIANG R B, DU Y Q, XIAO P, CHENG J Y, YUAN S J, CHEN Y L, YUAN J, CHEN J W. Nanomaterials (Basel), 2021, 11(5):1248.LIANG R B, DU Y Q, XIAO P, CHENG J Y, YUAN S J, CHEN Y L, YUAN J, CHEN J W. Nanomaterials (Basel), 2021, 11(5):1248.

    7. [7]

      TIWARI A P, MUKHIYA T, MUTHURASU A, CHHETRI K, LEE M, DAHAL B, LOHANI P C, KIM H Y. Electrochem., 2021, 2(2):236-250.TIWARI A P, MUKHIYA T, MUTHURASU A, CHHETRI K, LEE M, DAHAL B, LOHANI P C, KIM H Y. Electrochem., 2021, 2(2):236-250.

    8. [8]

      WANG S F, XIAO Z Y, ZHAI S R, WANG H S, CAI W J, QIN L F, HUANG J Y, ZHAO D, LI Z C, AN Q D. J. Mater. Chem. A, 2019, 29:17345-17356.WANG S F, XIAO Z Y, ZHAI S R, WANG H S, CAI W J, QIN L F, HUANG J Y, ZHAO D, LI Z C, AN Q D. J. Mater. Chem. A, 2019, 29:17345-17356.

    9. [9]

      TANG Q, ZHOU Y, MA L, GAN M Y. J. Solid State Chem., 2019, 269:175-183.TANG Q, ZHOU Y, MA L, GAN M Y. J. Solid State Chem., 2019, 269:175-183.

    10. [10]

      LIANG Ming-Hui, WANG Huan, YIN Yan-Yan, LI Xiao-Jun. Met. Funct. Mater., 2020, 27(6):1-14. 梁明会, 王焕, 尹艳艳, 李晓军. 金属功能材料, 2020, 27(6):1-14.

    11. [11]

      WEI C Z, RU Q L, KANG X T, HOU H Y, CHENG C, ZHANG D J. Appl. Surf. Sci., 2018, 435:993-1001.WEI C Z, RU Q L, KANG X T, HOU H Y, CHENG C, ZHANG D J. Appl. Surf. Sci., 2018, 435:993-1001.

    12. [12]

      SUN P, LIANG J C, CHEN G Y, LI Y H, ZHOU K Y, LIU J, ZHANG W Z, NIU F, ZHANG W X. Rare Met. Mater. Eng., 2018, 47(5):1359-1364.SUN P, LIANG J C, CHEN G Y, LI Y H, ZHOU K Y, LIU J, ZHANG W Z, NIU F, ZHANG W X. Rare Met. Mater. Eng., 2018, 47(5):1359-1364.

    13. [13]

      KUMAR M, JEONG D I, SARWAR N, YOON D H. Ceram. Int., 2021, 47(12):16852-16860.KUMAR M, JEONG D I, SARWAR N, YOON D H. Ceram. Int., 2021, 47(12):16852-16860.

    14. [14]

      YANG J, YU C, FAN X M, LIANG S X, LI S F, HUANG H W, LING Z, HAO C, QIU J S. Energy Environ. Sci., 2016, 9(4):1299-1307.YANG J, YU C, FAN X M, LIANG S X, LI S F, HUANG H W, LING Z, HAO C, QIU J S. Energy Environ. Sci., 2016, 9(4):1299-1307.

    15. [15]

      LIU P, SUI Y W, WEI F X, QI J Q, MENG Q K, REN Y J, HE Y Z. Nano, 2019, 14(7):1950088.LIU P, SUI Y W, WEI F X, QI J Q, MENG Q K, REN Y J, HE Y Z. Nano, 2019, 14(7):1950088.

    16. [16]

      LI Z P, ZHAO D, XU C Y, NING J Q, ZHONG Y J, ZHANG Z Y, WANG Y J, HU Y. Electrochim. Acta, 2018, 278:33-41.LI Z P, ZHAO D, XU C Y, NING J Q, ZHONG Y J, ZHANG Z Y, WANG Y J, HU Y. Electrochim. Acta, 2018, 278:33-41.

    17. [17]

      CAO X, HE J, LI H, KANG L P, HE X X, SUN J, JIANG R B, XU H, LEI Z B, LIU Z H. Small, 2018,14(27):1800998.CAO X, HE J, LI H, KANG L P, HE X X, SUN J, JIANG R B, XU H, LEI Z B, LIU Z H. Small, 2018,14(27):1800998.

    18. [18]

      LIANG Y X, GONG Q J, SUN X L, XU N N, GONG P N, QIAO J L. Electrochim. Acta, 2020, 342:136108-136118.LIANG Y X, GONG Q J, SUN X L, XU N N, GONG P N, QIAO J L. Electrochim. Acta, 2020, 342:136108-136118.

    19. [19]

      DU F, SHI L, ZHANG Y T, LI T, WANG J L, WEN G H, ALSAEDI A, HAYAT T, ZHOU Y, ZOU Z G. Appl. Catal., B, 2019, 253:246-252.DU F, SHI L, ZHANG Y T, LI T, WANG J L, WEN G H, ALSAEDI A, HAYAT T, ZHOU Y, ZOU Z G. Appl. Catal., B, 2019, 253:246-252.

    20. [20]

      RAJESHJ A, PARK J H, VINH QUY V H, KWON J M, CHAE J, KANG S H, KIM H, AHN K S. J. Ind. Eng. Chem., 2018, 63:73-83.RAJESHJ A, PARK J H, VINH QUY V H, KWON J M, CHAE J, KANG S H, KIM H, AHN K S. J. Ind. Eng. Chem., 2018, 63:73-83.

    21. [21]

      HUNG T F, YIN Z W, BETZLER S B, ZHENG W J, YANG J, ZHENG H. Chem. Eng. J., 2019, 367:115-122.HUNG T F, YIN Z W, BETZLER S B, ZHENG W J, YANG J, ZHENG H. Chem. Eng. J., 2019, 367:115-122.

    22. [22]

      GONG Peng-Ni, GONG Qiao-Juan, ZHAO Xiao-Yan, FAN Jia-Min. Dianyuan Jishu, 2021, 45(1):31-33. 巩鹏妮, 弓巧娟, 赵晓燕, 范嘉敏. 电源技术, 2021, 45(1):31-33.

    23. [23]

      CAO X, HE J, LI H, KANG L P, HE X X, SUN J, JIANG R B, XU H, LEI Z B, LIU Z H. Small, 2018,14(27):1800998.CAO X, HE J, LI H, KANG L P, HE X X, SUN J, JIANG R B, XU H, LEI Z B, LIU Z H. Small, 2018,14(27):1800998.

    24. [24]

      GAO Z Y,CHEN C, CHANG J L, CHEN L M, WANG P Y, WU D P, XU F, GUO Y M, JIANG K. Electrochim. Acta, 2018, 281:394-404.GAO Z Y,CHEN C, CHANG J L, CHEN L M, WANG P Y, WU D P, XU F, GUO Y M, JIANG K. Electrochim. Acta, 2018, 281:394-404.

    25. [25]

      YANG Y Y, ZHANG Y, ZHU C M, XIE Y D, LV L W, CHEN W L, HE Y Y, HU Z G. J. Alloys Compd., 2020, 823:153885YANG Y Y, ZHANG Y, ZHU C M, XIE Y D, LV L W, CHEN W L, HE Y Y, HU Z G. J. Alloys Compd., 2020, 823:153885

    26. [26]

      ZHAO X Y, MA Q X, TAO K, HAN L. ACS Appl. Energy Mater., 2021, 4(4):4199-4207.ZHAO X Y, MA Q X, TAO K, HAN L. ACS Appl. Energy Mater., 2021, 4(4):4199-4207.

    27. [27]

      TANG J H, SHEN J F, LI N, YE M X. Ceram. Int., 2015, 41(5):6203-6211.TANG J H, SHEN J F, LI N, YE M X. Ceram. Int., 2015, 41(5):6203-6211.

    28. [28]

      LI R, WANG S L, HUANG Z C, LU F X, HE T B. J. Power Sources, 2016, 312:156-164.LI R, WANG S L, HUANG Z C, LU F X, HE T B. J. Power Sources, 2016, 312:156-164.

    29. [29]

      XU R, LIN J M, WU J H, HUANG M L, FAN L Q, HE X, WANG Y T, XU Z D. Appl. Surf. Sci., 2017, 422:597-606.XU R, LIN J M, WU J H, HUANG M L, FAN L Q, HE X, WANG Y T, XU Z D. Appl. Surf. Sci., 2017, 422:597-606.

    30. [30]

      YAN Y Q, DING S X, ZHOU X Y, HU Q, YI F, ZHENG Q J, LIN D M, WEI X J. J. Alloys Compd., 2021, 867:158941.YAN Y Q, DING S X, ZHOU X Y, HU Q, YI F, ZHENG Q J, LIN D M, WEI X J. J. Alloys Compd., 2021, 867:158941.

    31. [31]

      CHEN Q D, MIAO J K, QUAN L, CAI D P, ZHAN H B. Nanoscale, 2018, 10(8):4051-4060.CHEN Q D, MIAO J K, QUAN L, CAI D P, ZHAN H B. Nanoscale, 2018, 10(8):4051-4060.

    32. [32]

      MA X, ZHANG L, XU G C, ZHANG C Y, SONG H J, HE Y T, ZHANG C, JIA D Z. Chem. Eng. J., 2017, 320:22-28.MA X, ZHANG L, XU G C, ZHANG C Y, SONG H J, HE Y T, ZHANG C, JIA D Z. Chem. Eng. J., 2017, 320:22-28.

  • 加载中
计量
  • PDF下载量:  14
  • 文章访问数:  1019
  • HTML全文浏览量:  122
文章相关
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-10-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章