Dimensionality Reducing from Three-dimensional RbLu5Te8 to Two-dimensional CsMnGdTe3: Syntheses, Crystal and Electronic Structures

Jian-Han ZHANG Sheng-Hua ZHOU Hua LIN

Citation:  Jian-Han ZHANG, Sheng-Hua ZHOU, Hua LIN. Dimensionality Reducing from Three-dimensional RbLu5Te8 to Two-dimensional CsMnGdTe3: Syntheses, Crystal and Electronic Structures[J]. Chinese Journal of Structural Chemistry, 2020, 39(10): 1770-1780. doi: 10.14102/j.cnki.0254–5861.2011–2724 shu

Dimensionality Reducing from Three-dimensional RbLu5Te8 to Two-dimensional CsMnGdTe3: Syntheses, Crystal and Electronic Structures

English

  • In the past decades, the investigation of multinary chalcogenides has been an extensive research area due to their fascinating physical properties, such as ion exchange, magnetism, catalysis, superconductivity, thermoelectricity and nonlinear optic, etc[16]. Among them, ternary A/RE/Q (A = alkali metals, RE = rare-earth elements, Q = chalcogen) exhibit a rich structure diversity. In these structures, the basic building unit (BBU) [REQ6] octahedra can be connected with each other to form many different two-dimensional (2D) layers, three-dimensional (3D) frameworks and closed cavities[731]. For example, with the A/RE atomic ratio decreasing from 1.0 (AREQ2)[713] to 0.43 (A3RE7Q12)[1519] then to 0.14 (ARE7Q11)[29, 31], the structure changes from a 2D layer to an open 3D channel and then to a closed cavity structure. To further enrich the structural diversities coupled with particular physical properties, the introduction of transition metal (TM) with multiple coordination modes and valence states into the ternary A/RE/Q system is an effective strategy. Until now, a large number of novel multinary chalcogenides containing RE and TM elements, i.e., quaternary A/RE/TM/Q system, have been successfully synthesized and well characterized. Members of this family include ARETMQ3 (TM = Mn, Co, Zn, Cd and Hg)[32, 44], ARETMQ4 (TM = Cu and Ag)[33], ARECu2Q4[34], ARE2CuQ4[3542], ARE2CuQ6[43], ARE2TM3Q5 (TM = Cu and Ag)[36, 39, 4547], ARE3Cu2Q6[48], A2REAg3Q4[49], A2RECu3Q5[50], A2RE4TM4Q9 (TM = Cu, Ag and Au)[41], A3RE4Cu5Q10[51], and AxRE2Cu6-xQ6[52]. Such compounds possess a wide variety of RE-Q topologies from one-dimensional (1D) chains in A2REAg3Q4[49] to 2D layers in ARE3Cu2Q6[48] to 3D networks in ARE2CuQ4[3542]. Channel structures where the A metals reside in the channels are particularly prevalent.

    In an earlier study, many novel multinary rare-earth chalcogenides have been discovered by our group, like Cs[RE7Q11] (RE = Yb, Lu; Q = S and Se)[29, 31], (ClCs6)[RE21Q34] (RE = Dy, Ho; Q = S, Se and Te)[29], Cs[RE9Mn4Q18] (RE = Ho~Lu)[53], Cs[RE9Cd4Q18] (RE = Tb~Tm)[54], Cs2[RE8InS14] (RE = Ho~Lu)[55]. Recently, we have further spread our work on exploring other chalcogenides with new structural types or known structures with new chemical compositions, and have successfully obtained two new tellurides in this field, namely RbLu5Te8 and CsMnGdTe3. Herein, we present the syntheses, crystal structures as well as electronic structures of these two compounds in detail.

    All acquired elements were stored inside an Ar-filled glovebox (moisture and oxygen levels less than 0.1 ppm), and loading manipulations were carried out in the glovebox. Chunks of Gd and Lu (99.95%) were purchased from Huhhot Jinrui Rare Earth Co., Ltd. Lumpy Te (99.999%) was purchased from Alfa Aesar, and powdery RbCl (99.99%) and CsCl (99.99%) were commercially available from Sinopharm Chemical Reagent Co., Ltd. The reagents were loaded with corresponding stoichiometric ratios into a silica crucible in a silica jacket, and then the tubing was flame-sealed under high vacuum of 10–3 Pa. The reaction assembly was heated in a tube furnace according to the profile described below.

    RbLu5Te8 was first obtained as a byproduct by the reaction of RbCl/Lu/Mn/Te = 5:1:1:3. The samples were loaded into a fused-silica tube under vacuum, and annealed at 773 K for 20 h, then at 1173 K for 100 h followed by cooling to 573 K at 3 K/h before switching off the furnace. After being washed by absolute ethanol, the products consisted of black chunks of RbLu5Te8. Analyses of these crystals with an EDX-equipped JSM6700F SEM showed the presence of Rb, Lu and Te, but without Cl or Mn. The synthesis of CsMnGdTe3 was similar to that of RbLu5Te8. The only difference was the starting reactants, CsCl/Gd/Mn/Te = 5:1:1:3, and the yield was 5% based on Gd. These compounds are stable in the presence of air and water.

    The single-crystal diffraction data were collected on a Saturn 70 CCD diffractometer equipped with graphite-monochromated Mo- radiation (λ = 0.71073 Å) at 293(2) K. The data were corrected for Lorentz and polarization factors and absorption correction was performed by the multi-scan method[56]. The structure was solved by direct methods and refined by full-matrix least-squares fitting on F2 by SHELXL-2014[57]. All atoms were refined with anisotropic thermal parameters. The coordinates were standardized using STRUCTURE TIDY[58]. The structure was solved and refined successfully. For RbLu5Te8 in the monoclinic C2/m (no. 12) space group, a = 22.0751(5), b = 4.2987(8), c = 10.588(2) Å, β = 103.89(2)º, V = 975.4(4) Å3 and Z = 2, while CsMnGdTe3 is of orthorhombic Cmcm (no. 63) space group with a = 4.4872(4), b = 16.769(3), c = 11.807(2) Å, V = 888.4(3) Å3 and Z = 4. The final R = 0.0485, wR = 0.1198 (w = 1/[σ2(Fo2) + (0.0443P)2 + 8.7453P], where P = (Fo2 + 2Fc2)/3), (Δρ)max = 2.654, (Δρ)min = –2.656 e/Å3 and S = 1.067 for RbLu5Te8; and R = 0.0459, wR = 0.1071, (Δρ)max = 3.383, (Δρ)min = –2.165 e/Å3 and S = 1.065 for CsMnGdTe3. The positional coordinates and isotropic equivalent thermal parameters are given in Table 1, and the selected bond distances are listed in Table 2.

    Table 1

    Table 1.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters of RbLu5Te8 and CsGdMnTe3
    DownLoad: CSV
    Atom Symmetry x y z U(eq)2)a Occu.
    RbLu5Te8
    Rb 2d 0 0.5 0 0.0139(9) 1
    Lu1 2a 0 0 0.5 0.0127(4) 1
    Lu2 4i 0.34447(6) 0 0.52910(13) 0.0121(4) 1
    Lu3 4i 0.29562(6) 0 0.15426(13) 0.0130(4) 1
    Te1 4i 0.23536(9) 0 0.65606(19) 0.0110(5) 1
    Te2 4i 0.16423(9) 0 0.0008(2) 0.0140(5) 1
    Te3 4i 0.08410(9) 0 0.31182(19) 0.0131(5) 1
    CsGdMnTe3
    Cs 4c 0 0.7437(2) 0.25 0.0298(6) 1
    Gd 4a 0 0 0 0.0160(5) 1
    Mn 4c 0 0.4604(3) 0.25 0.0174(2) 1
    Te1 4c 0 0.0594(2) 0.25 0.0156(5) 1
    Te2 8f 0 0.3765(7) 0.0538(2) 0.0174(5) 1
    aU(eq) is defined as one-third of the trace of the orthogonalized Uij tensor.

    Table 2

    Table 2.  Selected Bond Lengths (Å) and Bond Angles (°) of RbLu5Te8 and CsGdMnTe3
    DownLoad: CSV
    RbLu5Te8 CsGdMnTe3
    Bond Dist. Bond Dist.
    Lu(1)–Te(1) × 4 3.004(2) Mn–Te(1) ×2 2.791(3)
    Lu(1)–Te(4) × 2 3.031(2) Mn–Te(2) ×2 2.711(3)
    Lu(2)–Te(1) × 2 2.944(2) Gd–Te(1) ×2 3.1155(8)
    Lu(2)–Te(4) × 2 3.016(2) Gd–Te(2) ×4 3.1186(9)
    Lu(2)–Te(1) 3.027(2) Cs–Te(1) ×2 3.818(2)
    Lu(2)–Te(2) 3.146(2) Cs–Te(2) ×4 3.919(2)
    Lu(2)–Te(2) × 2 2.718(2) Cs–Te(2) ×2 4.114(2)
    Lu(3)–Te(3) 2.965(2)
    Lu(3)–Te(3) × 2 2.968(2)
    Lu(3)–Te(1) 3.031(2)
    Lu(3)–Te(2) × 2 3.127(2)
    Rb–Te(4) × 4 4.004(2)
    Rb–Te(3) × 4 4.212(2)
    Rb–Te(1) × 2 4.266(2)
    Angle (°) Angle (°)
    Te(1)–Lu(1)–Te(1) 91.37(5) Te(1)–Gd–Te(1) 180.0
    Te(1)–Lu(1)–Te(1) 88.63(5) Te(1)–Gd–Te(2) 88.88(3)
    Te(1)–Lu(1)–Te(1) 180.0 Te(1)–Gd–Te(2) 91.12(3)
    Te(1)–Lu(1)–Te(4) 92.35(4) Te(2)–Gd–Te(2) 92.01(4)
    Te(1)–Lu(1)–Te(4) 87.65(4) Te(2)–Gd–Te(2) 180.00(3)
    Te(4)–Lu(2)–Te(4) 93.77(6) Te(2)–Gd–Te(2) 87.99(4)
    Te(4)–Lu(2)–Te(1) 93.85(5) Te(2)–Gd–Te(2) 92.01(4)
    Te(4)–Lu(2)–Te(2) 96.92(5) Te(2)–Mn–Te(2) 117.4(2)
    Te(1)–Lu(2)–Te(2) 164.21(7) Te(2)–Mn–Te(1) 107.99(2)
    Te(4)–Lu(2)–Te(2) 176.06(5) Te(1)–Mn–Te(1) 107.0(2)
    Te(4)–Lu(2)–Te(2) 90.01(4)
    Te(1)–Lu(2)–Te(2) 84.79(5)
    Te(2)–Lu(2)–Te(4) 83.69(5)
    Te(2)–Lu(2)–Te(2) 86.18(6)
    Te(3)–Lu(3)–Te(3) 94.57(5)
    Te(3)–Lu(3)–Te(3) 92.81(6)
    Te(3)–Lu(3)–Te(1) 174.25(6)
    Te(3)–Lu(3)–Te(1) 89.39(5)
    Te(3)–Lu(3)–Te(2) 90.95(5)
    Te(3)–Lu(3)–Te(2) 173.63(6)
    Te(3)–Lu(3)–Te(2) 89.91(4)
    Te(1)–Lu(3)–Te(2) 84.88(5)
    Te(3)–Lu(3)–Te(2) 90.95(5)
    Te(2)–Lu(3)–Te(2) 86.83(5)

    The elemental analysis data were collected on a field emission scanning electron microscope (FESEM, JSM6700F) equipped with an energy dispersive X-ray spectroscope (EDX, Oxford INCA) on clean single crystal surfaces.

    Utilizing density functional theory (DFT) as implemented in the Vienna ab-initio simulation package (VASP) code[59], we investigate the electronic structure of the title compound. We used projector augmented wave (PAW) method[60] for the ionic cores and the generalized gradient approximation (GGA)[61] for the exchange-correlation potential, in which the Perdew-Burke-Ernzerhof (PBE) type[62] exchange-correlation was adopted. The reciprocal space was sampled with 0.03 Å−1 spacing in the Monkhorst-Pack scheme for structure optimization, while denser k-point grids with 0.01 Å−1 spacing were adopted for property calculation. A mesh cutoff energy of 500 eV was aopted to determine the self-consistent charge density. All geometries are fully relaxed until the Hellmann-Feynman force on atoms is less than 0.01 eV/Å and the total energy change is lower than 1.0 × 10−5 eV.

    Single-crystal XRD data reveal that the new rubidium lutetium telluride RbLu5Te8 belongs to the TlV5S8-type structure[63] in the monoclinic space group C2/m (no. 12) with two formula units in a unit cell. The ternary RbLu5Te8 is the second example found within the ARE5Q8-type compounds. Attempts to substitute other chemical components in this type under similar synthetic conditions were unsuccessful. As listed in Table 1, there is one crystallo-graphically Rb (Wyckoff position: 2d), three Lu (Wyckoff positions: 2a, 4i and4i) and four Te atoms (Wyckoff positions: 4i) in an asymmetric unit. The three independent Lu atoms are arranged in three basic chains denoted as chains I (by Lu(1), site symmetry 2/m), Ⅱ (by Lu(2), site symmetry m) and Ⅲ (by Lu(3), site symmetry m) (Fig. 1), and each Lu atom is octahedrally coordinated by six Te atoms at normal Lu–Te distances ranging between 2.94 and 3.15 Å (Table 2). Chains I and Ⅱ form cadmium-halide analogous 2D [(LuTe6/3)3]3– layers parallel to (001) by edge-condensation. Similar layers are found in the structures of RbSc5Te8[64], RbScTe2[65] and TlScTe2[65]. Then, these [(LuTe6/3)3]3– layers and chains Ⅲ are linked to each other through face- and vertex-sharing to build up the 3D anionic framework [Lu5Te8] (Fig. 1d). The resulting structure provides 1D channels with distorted square shape. For charge compensation, these are filled up with Rb+ cations coordinated in trans-face bicapped cubic fashion by Te2– anions with the Rb–Te distances in a range from 4.00 to 4.27 Å (Fig. 2). It is interesting to compare the ARE5Q8-type structures with those of ARE3Q5-type[20] and A3RE7Q12-type[1519] previously reported. As shown in Fig. 3, the ARE3Q5-type crystal structure can be formally viewed as a substitution variant of ARE5Q8, where 2 RE3+ cations and 3 Q2– anions as in the composition [RE2Q3] are missing, while 1 [RE2Q3] and 1 [A2Q] equivalent each added to ARE5Q8 lead to the A3RE7Q12-type formula, but no face-linked [REQ6]9– octahedra occur in both arrangements any longer.

    Figure 1

    Figure 1.  (a~c) Three independent Lu atoms arranged in three basic chains (namely, chains Ⅰ, Ⅱ and Ⅲ) with the atom numbers marked. (d) 3D framework structure of RbLu5Te8 viewed along the ac-plane with the unit cell marked. 2D [Lu5Te8] layers and chain Ⅲ are outlined by the dashed area

    Figure 2

    Figure 2.  Local coordination environment of Rb atom in RbLu5Te8.

    Figure 3

    Figure 3.  Structural evolution from ARE5Q8 to ARE3Q5 and A3RE7Q12

    The new quaternary telluride CsGdMnTe3 belongs to the layered KZrCuS3 structure type[66] in the orthorhombic space group Cmcm (no. 63) with four formula units in a unit cell. Remarkably, CsGdMnTe3 is the first telluride discovered within the ARETMQ3-type compounds[32]. However, an attempt to synthesize isostructural compounds CsREMnTe3 was unsuccessful under similar synthetic conditions. The crystallographically unique Cs atom is located at the 4c site with symmetry m2m, Gd atom at the 4a site with symmetry 2/m, Mn atom at the 4c site with symmetry m2m, and the two Te atoms at 4c and 8f sites with symmetry m2m and m, respectively (Table 1). The main structural motif of CsGdMnTe3 is the 2D [GdMnTe3] layers parallel to the ac-plane and the Cs+ cations surrounded by eight Te anions located between such layers (Fig. 4a). The three BUUs are identified as [GdTe6] octahedron, [MnTe4] tetrahedron, and [CsTe8] bicapped trigonal prism, respectively. The 2D [GdMnTe3] layers are constructed from a slightly distorted [GdTe6] octahedron via edge-sharing with two neighboring [GdTe6] octahedra along the a-axis and vertex-sharing with two other [GdTe6] octahedra along the c-direction, and the thus-formed distorted tetrahedral interstices are occupied by the Mn atoms (Fig. 4a). Between the neighboring 2D [GdMnTe3] layers, Cs+ cations are surrounded by eight Te atoms in a bicapped trigonal prismatic geometry (Fig. 4c). Because there is no Te–Te bond in CsGdMnTe3, the formal oxidation states of Cs/Gd/Mn/Te can be assigned as 1+/3+/2+/2–, respectively.

    Figure 4

    Figure 4.  (a) Crystal structure of CsGdMnTe3 viewed along the ac-plane with the unit cell marked; (b) View of the 2D [GdMnTe3] layer shown approximately along the b-axis with the atom numbers marked (blue: [GdTe6] octahedron; black: [MnTe4] tetrahedron)

    In CsGdMnTe3 compounds (Table 2), the Gd–Te distances range from 3.1155(8) to 3.1186(2) Å, which are consistent with the previous report in Gd-based chalcogenides, such as K3Cu5Gd4Te10 (3.005~3.168 Å)[51], KGdTe2 (3.119 Å)[12], Ba2GaGdTe5 (3.052~3.217 Å)[67] and BaCuGdTe3 (3.030~3.091 Å)[68]. The Mn–Te distances vary from 2.711(3) to 2.791(3) Å, in agreement with those (2.706 Å) in MnTe[69], Cs2Mn3Te4 (2.744~2.751 Å) [70] and Cs2MnSnTe4 (2.787 Å)[71]. The Cs–Te distances ranging from 3.818(2) to 4.114(2) Å are comparable to the values for CsGdCdTe3 (3.813~4.074 Å)[32], CsTiU3Te9 (3.829~4.145 Å)[72] and CsCdInTe3 (3.814~4.468 Å)[73] and show typical ionic bonding.

    DFT calculations based on the VASP software package have aided the understanding of the electronic structures of the title compounds. As shown in Fig. 6, the conduction band minimum (CBM = 0.86 eV) and valence band maximum (VBM = 0.00 eV) are located at the Γ and V points, respectively. Therefore, compound RbLu5Te8 is an indirect energy-gap (Eg) semiconductor with a calculated Eg of 0.86 eV. In order to understand the distribution of the valence orbitals of each atom near the Fermi level (EF), the total and partial density of states (DOSs) of RbLu5Te8 were calculated, as shown in Fig. 7. The Rb (5s and 5p) orbitals have no significant contributions around EF and acts as an electron donor to stabilize the crystal structure. The orbitals of Lu (5d) and Te (5p) dominate the states in the energy range from CBM to 5 eV. Most of the contributions around the EF are from Te (5p) and Lu (5p and 5d) electrons. Thereby, the electronic properties are mainly determined by the 3D [Lu5Te8] anionic framework.

    Figure 5

    Figure 5.  Local coordination environment of Cs atom in CsGdMnTe3

    Figure 6

    Figure 6.  Calculated band structure of RbLu5Te8. The Fermi level EF is set at 0.0 eV

    Figure 7

    Figure 7.  Calculated total and partial DOSs of RbLu5Te8

    The calculated electronic band structure of CsGdMnTe3 indicates an indirect Eg and semiconductor character, and the calculated Eg is 1.59 eV (Fig. 8). Moreover, the total and partial DOSs of CsGdMnTe3 are also calculated and shown in Fig. 9. The top of VB is mostly made up of Te-5p states mixed with a small number of Gd-5d and Mn-3d states, whereas the bottom of CB consists mostly of Gd-5d, Mn-3d and Te-5p states. Note that the partial DOSs of Cs-6p states located almost above EF, which proves that the Cs atom acts primarily as an electron donor to stabilize the structure. Thus, the optical gap is likely determined by the electronic transitions from Te-5p to the Gd-5d and Mn-3d states.

    Figure 8

    Figure 8.  Calculated band structure of CsGdMnTe3. The Fermi level EF is set at 0.0 eV

    Figure 9

    Figure 9.  Calculated total and partial DOSs of CsGdMnTe3

    Two new rare-earth tellurides, RbLu5Te8 and CsGdMnTe3, have been discovered by high-temperature solid-state reaction. RbLu5Te8 belongs to the TlV5S8-type structure in the monoclinic space group C2/m and the major structure motif is the 3D framework of [Lu5Te8] filled up with Rb+ cations. CsGdMnTe3 adopts the family of KZrCuS3-related structure type and its structure is built up from the alternate stacking of 2D [GdMnTe3] building blocks. The calculated electronic band structures indicate indirect band-gap semiconductor character for RbLu5Te8 and CsGdMnTe3. The band structure studies suggest that the transitions from Q p to RE 5d state determine the band gaps. Moreover, the DOSs demonstrate that a 3D [Lu5Te8] anion framework and 2D [GdMnTe3] anion layer produce the main contribution to determine the Eg of RbLu5Te8 and CsGdMnTe3, respectively. Further study to excavate the physical properties in this system is still in progress.


    1. [1]

      Wang, R.; Chen, H.; Xiao, Y.; Hadar, I.; Bu, K.; Zhang, X.; Pan, J.; Gu, Y.; Guo, Z.; Huang, F.; Kanatzidis, M. G. Kx[Bi4–xMnxS6], design of a highly selective ion exchange material and direct gap 2D semiconductor. J. Am. Chem. Soc. 2019, 141, 16903–16914. doi: 10.1021/jacs.9b08674

    2. [2]

      Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y.; Qiu, Z. Q.; Cava, R. J.; Louie, S. G.; Xia, J.; Zhang, X. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. doi: 10.1038/nature22060

    3. [3]

      Luo, N.; Wang, M.; Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F. Visible-light-driven self-hydrogen transfer hydrogenolysis of lignin models and extracts into phenolic products. ACS Catal. 2017, 7, 4571–4580. doi: 10.1021/acscatal.7b01043

    4. [4]

      Malliakas, C. D.; Chung, D. Y.; Claus, H.; Kanatzidis, M. G. Superconductivity in the narrow-gap semiconductor CsBi4Te6. J. Am. Chem. Soc. 2013, 135, 14540–14543. doi: 10.1021/ja407530u

    5. [5]

      Lin, H.; Tan, G. J.; Shen, J. N.; Hao, S. Q.; Wu, L. M.; Calta, N.; Malliakas, C.; Wang, S.; Uher, C.; Wolverton, C.; Kanatzidis, M. G. Concerted rattling in CsAg5Te3 leading to ultralow thermal conductivity and high thermoelectric performance. Angew. Chem. Int. Ed. 2016, 55, 11431–11436. doi: 10.1002/anie.201605015

    6. [6]

      Lin, H.; Chen, L.; Zhou, L. J.; Wu, L. M. Functionalization based on the substitutional flexibility: strong middle IR nonlinear optical selenides AX4X5Se12. J. Am. Chem. Soc. 2013, 135, 12914–12921. doi: 10.1021/ja4074084

    7. [7]

      Ohtani, T.; Honjo, H.; Wada, H. Synthesis, order-disorder transition and magnetic properties of LiLnS2, LiLnSe2, NaLnS2 and NaLnSe2 (Ln = lanthanides). Mater. Res. Bull. 1987, 22, 829–840. doi: 10.1016/0025-5408(87)90038-9

    8. [8]

      Keane, P. M.; Ibers, J. A. Structure of KErTe2. Acta Cryst. 1992, C48, 1301–1303.

    9. [9]

      Bronger, W.; Brüggemann, W.; Vonderahe, M.; Schmitz, D. Zur Synthese und struktur ternärer chalcogenide der seltenen erden AlnX2 mit A = alkalimetall und X = schwefel, selen oder tellur. J. Alloys Compd. 1993, 200, 205–210. doi: 10.1016/0925-8388(93)90495-9

    10. [10]

      Bronger, W.; Eyck, J.; Kruse, K.; Schmitz, D. Ternary rubidium rare-earth sulfides; synthesis and structure. Eur. J. Solid State Inorg. Chem. 1996, 33, 213–226.

    11. [11]

      Deng, B.; Ellis, D. E.; Ibers, J. A. New layered rubidium rare-earth selenides: syntheses, structures, physical properties and electronic structures for RbLnSe2. Inorg. Chem. 2002, 41, 5716–5720. doi: 10.1021/ic020324j

    12. [12]

      Stöwe, K.; Napoli, C.; Appel, S. Synthesen und kristallstrukturen von neuen alkalimetall-selten-erd-telluriden der zusammensetzung KLnTe2 (Ln = La, Pr, Nd, Gd), RbLnTe2 (Ln = Ce, Nd) und CsLnTe2 (Ln = Nd). Z. Anorg. Allg. Chem. 2003, 629, 1925–1928. doi: 10.1002/zaac.200300167

    13. [13]

      Babo, J. M.; Schleid, T. Two alkali-metal yttrium tellurides: single crystals of trigonal KYTe2 and hexagonal RbYTe2. Z. Anorg. Allg. Chem. 2009, 635, 1160–1162. doi: 10.1002/zaac.200900029

    14. [14]

      Kim, S. J.; Park, S. J.; Yun, H. S.; Do, J. W. Syntheses and crystal structures of new ternary selenides: Rb3Yb7Se12 and CsEr3Se5. Inorg. Chem. 1996, 35, 5283–5289. doi: 10.1021/ic960227o

    15. [15]

      Folchnandt, M.; Schleid, T. Synthesis and crystal structure of Cs3Y7Se12. Z. Anorg. Allg. Chem. 1997, 623, 1501–1502. doi: 10.1002/zaac.19976231005

    16. [16]

      Folchnandt, M.; Schleid, T. Ternary selenides of the lanthanides with alkali metals: I. the composition Cs3M7Se12 (M = Gd–Ho). Z. Anorg. Allg. Chem. 1998, 624, 1595–1600. doi: 10.1002/(SICI)1521-3749(199810)624:10<1595::AID-ZAAC1595>3.0.CO;2-C

    17. [17]

      Folchnandt, M.; Schleid, T. Crystal structure of trirubidium dodekaselenoheptadysprosate(Ⅲ), Rb3Dy7Se12. Z. Kristallord. New Cryst. Struct. 2000, 215, 9–10. doi: 10.1515/ncrs-2000-0107

    18. [18]

      Tougait, O.; Noël, H.; Ibers, J. A. Serendipitous syntheses of the series Cs3Ln7Te12 (Ln = Sm, Gd, Tb): compounds with large tunnels. Solid State Sci. 2001, 3, 513–518. doi: 10.1016/S1293-2558(01)01162-1

    19. [19]

      Lissner, F.; Hartenbach, I.; Schleid, T. K3Er7S12 and Rb3Er7S12: two ternary erbium(Ⅲ) sulfides with channel structures. Z. Anorg. Allg. Chem. 2002, 628, 1552–1555. doi: 10.1002/1521-3749(200207)628:7<1552::AID-ZAAC1552>3.0.CO;2-B

    20. [20]

      Yao, J. Y.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses and structures of CsHo3Te5 and Cs3Tm11Te18 and the electronic structure of CsHo3Te5. J. Solid State Chem. 2005, 178, 41–46. doi: 10.1016/j.jssc.2004.10.015

    21. [21]

      Babo, J. M.; Scheid, T. Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z. Anorg. Allg. Chem. 2008, 634, 1463–1465. doi: 10.1002/zaac.200800048

    22. [22]

      Lemoine, P.; Tomas, A.; Carre, D.; Vovan, T.; Guittard, M. Structure du sulfure de thulium et de potassium K2Tm23.33S36. Acta Cryst. 1989, C45, 350–353.

    23. [23]

      Stöwe, K. Syntheses and crystal structures of KPrTe4, KGdTe4 and RbGdTe4. Solid State Sci. 2003, 5, 765–769. doi: 10.1016/S1293-2558(03)00095-5

    24. [24]

      Stöwe, K.; Napoli, C.; Appel, S. Die kristallstrukturen von KNdTe4, RbPrTe4 und RbNdTe4-untersuchungen zur thermischen stabilitaet von KNdTe4 sowie bemerkungen zu einigen anderen vertretern der zusammensetzung ALnTe4 (A = K, Rb, Cs und Ln = Seltenerd-Metall). Z. Anorg. Allg. Chem. 2003, 629, 321–326. doi: 10.1002/zaac.200390051

    25. [25]

      Sutorik, A. C.; Kanatzidis, M. G. Reactions of lanthanides and actinides in molten alkali metal/polychalcogenide fluxes at intermediate temperatures (250~600 ℃). Chem. Mater. 1997, 9, 387–398. doi: 10.1021/cm960448s

    26. [26]

      Stöwe, K. Electronic band structures and physical properties of ALnTe4 and ALn3Te8 compounds (A = alkali metal; Ln = lanthanoid). J. Solid State Chem. 2003, 176, 594–608. doi: 10.1016/S0022-4596(03)00345-1

    27. [27]

      Patschke, R.; Heising, J.; Schindler, J.; Kannewurf, C. R.; Kanatzidis, M. Site occupancy wave and unprecedented infinite zigzag (Te2–2)n chains in the flat Te nets of the new ternary rare earth telluride family ALn3Te8. J. Solid State Chem. 1998, 135, 111–115. doi: 10.1006/jssc.1997.7606

    28. [28]

      Stöwe, K. Die kristallstruktur von KPr3Te8. Z. Anorg. Allg. Chem. 2003, 629, 403–409. doi: 10.1002/zaac.200390067

    29. [29]

      Lin, H.; Li, L. H.; Chen, L. Diverse closed cavities in condensed rare earth metal-chalcogenide matrixes: Cs[Lu7Q11] and (ClCs6)[RE21Q34] (RE = Dy, Ho; Q = S, Se, Te). Inorg. Chem. 2012, 51, 4588–4596. doi: 10.1021/ic202494w

    30. [30]

      Wang P.; Lin, H. Synthesis, structure, and property of a three-dimensional channel quaternary compound: Cs0.75(6)Er4.43(5)In3.32(6)S12. Chin. J. Struct. Chem. 2013, 32, 1873–1879.

    31. [31]

      Zheng, Y. J.; Liu, P. F.; Wu, X. T.; Wu, L. M.; Lin, H. Synthesis, crystal structure, physical properties and theoretical studies of new ternary sulfide with closed cavities: CsYb7S11. Chin. J. Struct. Chem. 2017, 36, 1780–1790.

    32. [32]

      Koscielski, L. A.; Ibers, J. A. The structural chemistry of quaternary chalcogenides of the type AMM'Q3. Z. Anorg. Allg. Chem. 2012, 638, 2585–2593. doi: 10.1002/zaac.201200301

    33. [33]

      Patschke, R.; Heising, J.; Kanatzidis, M.; Brazis, P.; Kannewurf, C. R. KCuCeTe4: a new intergrowth rare earth telluride with an incommensurate superstructure associated with a distorted square net of tellurium. Chem. Mater. 1998, 10, 695–697. doi: 10.1021/cm970760h

    34. [34]

      Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. G. Cu0.66EuTe2, KCu2EuTe4 and Na0.2Ag2.8EuTe4: compounds with modulated square Te nets. J. Mater. Chem. 1999, 9, 2293–2296. doi: 10.1039/a903945g

    35. [35]

      Stoll, P.; Duerichen, P.; Naether, C.; Bensch, W. Synthesis and crystal structure of KCuGd2S4: a three dimensional framework with isolated channels. Z. Anorg. Allg. Chem. 1998, 624, 1807–1810. doi: 10.1002/(SICI)1521-3749(1998110)624:11<1807::AID-ZAAC1807>3.0.CO;2-Z

    36. [36]

      Huang, F. Q.; Ibers, J. A. Syntheses and structures of the new quaternary rubidium selenides RbLn2CuSe4 (Ln = Sm, Gd, Dy), Rb1.5Ln2Cu2.5Se5 (Ln = Gd, Dy), and RbSm2Ag3Se5. J. Solid State Chem. 2000, 151, 317–322. doi: 10.1006/jssc.2000.8661

    37. [37]

      Babo, J. M.; Strobel, S.; Schleid, T. Syntheses and crystal structures of CsCuNd2Se4 and CsCuGd2Te4: two non-isotypical cesium copper lanthanide chalcogenides with infinite {[CuCh3]} chains of vertex-shared [CuCh4]7- tetrahedral. Z. Anorg. Allg. Chem. 2010, 636, 349–355. doi: 10.1002/zaac.200900419

    38. [38]

      Babo, J. M.; Schleid, T. CsCuSc3Te6 and CsCuY2Te4: two new quaternary cesium copper rare-earth metal tellurides. Solid State Sci. 2010, 12, 238–245. doi: 10.1016/j.solidstatesciences.2009.11.001

    39. [39]

      Huang, F. Q.; Ibers, J. A. Syntheses, structures and physical properties of the new quaternaryrare-earth chalcogenides RbNd2CuS4, RbSm2CuS4, CsLa2CuSe4, CsSm2CuSe4, RbEr2Cu3S5, CsGd2Ag3Se5, CsTb2Ag3Se5 and Rb2Gd4Cu4S9. J. Solid State Chem. 2001, 158, 299–306. doi: 10.1006/jssc.2001.9110

    40. [40]

      Zeng, H. Y.; Mao, J. G.; Chen, J. T.; Dong Z. C.; Guo, G. C.; Huang, J. S. Synthesis and structure of IR-transparent rare-earth selenides KLn2CuSe4 (Ln = Ho, Er). J. Alloys Compd. 2002, 336, 148–153. doi: 10.1016/S0925-8388(01)01898-9

    41. [41]

      Yao, J. Y.; Deng, B.; Ellis, D. E.; Ibers, J. A. Syntheses, structures, physical properties and electronic structures of KLn2CuS4 (Ln = Dy, Nd, Sm, Tb, Ho) and K2Ln4Cu4S9 (Ln = Dy, Ho). J. Solid State Chem. 2003, 176, 5–12. doi: 10.1016/S0022-4596(03)00233-0

    42. [42]

      Yao, J. W.; Ibers, J. A. RbGd2CuS4. Acta Crystallogr. E 2004, 60, i95–i96. doi: 10.1107/S1600536804016460

    43. [43]

      Bensch, W.; Duerichen, P. Preparation and crystal structure of the new quaternary europium polysulfide KCuEu2S6. Chem. Ber. 1996, 129, 1489–1492. doi: 10.1002/cber.19961291214

    44. [44]

      Sutorik, A. C.; Albritton-Thomas, J.; Hogan, T.; Kannewurf, C. R.; Kanatzidis, M. G. New quaternary compounds resulting from the reaction of copper and f-block metals in molten polychalcogenide salts at intermediate temperatures valence fluctuations in the layered CsCuCeS3. Chem. Mater. 1996, 8, 751–761. doi: 10.1021/cm950438b

    45. [45]

      Lauxmann, P.; Schleid, T. CsCu3Dy2S5 und CsCu3Er2S5: zwei isotype quaternaere sulfide der lanthanoide mit kanalstrukturen. Z. Naturforsch., B: Chem. Sci. 2001, 56, 1149–1154. doi: 10.1515/znb-2001-1109

    46. [46]

      Ijjaali, I.; Ibers, J. A. Preparation and structures of CsGd2Cu3Se5 and CsTb2Cu3Se5. J. Alloys Compd. 2003, 353, 124–127. doi: 10.1016/S0925-8388(02)01311-7

    47. [47]

      Strobel, S.; Schleid, T. Quaternaere caesium-kupfer(Ⅰ)-lanthanoid(Ⅲ)-selenide vom typ CsCu3M2Se5 (M = Sm, Gd–Lu). Z. Anorg. Allg. Chem. 2004, 630, 706–711. doi: 10.1002/zaac.200400018

    48. [48]

      Babo, J. M.; Hartenbach, I.; Schleid, T. A quaternary scandium telluride with infinite chains of cis-edge sharing [CuTe4]7- tetrahedral. Z. Kristallogr. Supplement Issue 2007, 25, 19.

    49. [49]

      Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. K2Ag3CeTe4: a semiconducting tunnel framework made from the covalent "link-up" of [Ag2CeTe4](3-) layers with Ag. Inorg. Chem. 1998, 37, 6562–6563. doi: 10.1021/ic981177l

    50. [50]

      Patschke, R.; Brazis, P.; Kannewurf, C. R.; Kanatzidis, M. Rb2Cu3CeTe5: a quaternary semiconducting compound with a two-dimensional polytelluride framework. J. Mater. Chem. 1998, 8, 2587–2589. doi: 10.1039/a806729e

    51. [51]

      Huang, F. Q.; Ibers, J. A. Syntheses and structures of the quaternary copper tellurides K2Ln4Cu5Te10 (Ln = Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln = Nd, Gd) and Cs3Gd4Cu5Te10. J. Solid State Chem. 2001, 160, 409–414. doi: 10.1006/jssc.2001.9256

    52. [52]

      Meng, C. Y.; Chen, H.; Wang, P.; Chen, L. Syntheses, structures, and magnetic and thermoelectric properties of double-tunnel tellurides: AxRE2Cu6-xTe6 (A = K–Cs; RE = La–Nd). Chem. Mater. 2011, 23, 4910–4919. doi: 10.1021/cm201574a

    53. [53]

      Lin, H.; Shen, J. N.; Shi, Y. F.; Li, L. H.; Chen, L. Quaternary rare-earth selenides with closed cavities: Cs[RE9Mn4Se18] (RE = Ho–Lu). Inorg. Chem. Front. 2015, 2, 298–305. doi: 10.1039/C4QI00202D

    54. [54]

      Lin, H.; Chen, H.; Liu, P. F.; Yu, J. S.; Zheng, Y. J.; Ali, K. M.; Chen, L.; Wu, L. M. Syntheses, structures, physical and electronic properties of quaternary semiconductors: Cs[RE9Cd4Se18] (RE = Tb–Tm). Dalton Trans. 2016, 45, 5775–5782. doi: 10.1039/C6DT00193A

    55. [55]

      Chen, H.; Liu, P. F.; Lin, H.; Wu, L. M.; Wu, X. T. Solid-state preparation, structural characterization, physical properties and theoretical studies of a series of novel rare-earth metal-chalcogenides with unprecedented closed cavities. Cryst. Growth Des. 2019, 19, 444–452. doi: 10.1021/acs.cgd.8b01541

    56. [56]

      Crystal Clear, Version 1. 3. 5. Rigaku Corp. : The Woodlands, TX 1999.

    57. [57]

      Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst., Sect. A: Found. Cryst. 2008, 112–122.

    58. [58]

      Gelato, L. M.; Parthe, E. STRUCTURETIDY-a computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143. doi: 10.1107/S0021889887086965

    59. [59]

      Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. doi: 10.1103/PhysRevB.54.11169

    60. [60]

      Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    61. [61]

      Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. doi: 10.1103/PhysRevB.50.17953

    62. [62]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. doi: 10.1103/PhysRevLett.77.3865

    63. [63]

      Fournѐs, L.; Vlasse, M.; Saux, M. Preparation, properties and crystal structure of TlV5S8. Mater. Res. Bull. 1977, 12, 1–5. doi: 10.1016/0025-5408(77)90081-2

    64. [64]

      Babo, J. M.; Schleid, T. Synthesis and crystal structure of the rubidium scandium telluride RbSc5Te8. Z. Anorg. Allg. Chem. 2008, 634, 1463–1465. doi: 10.1002/zaac.200800048

    65. [65]

      Teske, C. L.; Bensch, W.; Mankovsky, S.; Ebert, H. Preparation, crystal structure, physical properties and electronic band structure of TlScQ2 (Q = S, Se and Te). Z. Anorg. Allg. Chem. 2008, 634, 445–451. doi: 10.1002/zaac.200700440

    66. [66]

      Mansuetto, M. F.; Keane, P. M.; Ibers, J. A. Synthesis, structure, and conductivity of the new group IV chalcogenides, KCuZrQ3 (Q = S, Se, Te). J. Solid State Chem. 1992, 101, 257–264. doi: 10.1016/0022-4596(92)90182-U

    67. [67]

      Yin, W.; Wang, W.; Bai, L.; Feng, K.; Shi, Y.; Hao, W.; Yao, J.; Wu, Y. Syntheses, structures, physical properties, and electronic structures of Ba2MLnTe5 (M = Ga and Ln = Sm, Gd, Dy, Er, Y; M = In and Ln = Ce, Nd, Sm, Gd, Dy, Er, Y). Inorg. Chem. 2012, 51, 11736–11744. doi: 10.1021/ic301655e

    68. [68]

      Prakash, J.; Mesbah, A.; Beard, J. C.; Ibers, J. A. Syntheses and crystal structures of BaAgTbS3, BaCuGdTe3, BaCuTbTe3, BaAgTbTe3, and CsAgUTe3. Z. Anorg. Allg. Chem. 2015, 641, 1253–1257. doi: 10.1002/zaac.201500027

    69. [69]

      Durbin, S. M.; Han, J.; Sungki, O.; Kobayashi, M.; Menke, D. R.; Gunshor, R. L. Zinc-blende MnTe: epilayers and quantum well structures. Appl. Phys. Lett. 1989, 55, 2087. doi: 10.1063/1.102091

    70. [70]

      Wu, E. J.; Ibers, J. A. Cs2Mn3Te4. Acta Cryst. 1997, C53, 993–994.

    71. [71]

      Zimmermann, C.; Dehnen, S. Cs2(MnSnTe4): ungewoehnliche synthese einer quaternaeren phase mit eindimensionalen, ternaeren anionenstraengen. Z. Anorg. Allg. Chem. 2003, 629, 1553–1556. doi: 10.1002/zaac.200300111

    72. [72]

      Ward, M. D.; Mesbah, A.; Lee, M.; Malliakas, C. D.; Choi, E. S.; Ibers, J. A. Synthesis and characterization of two quaternary uranium tellurides, RbTiU3Te9 and CsTiU3Te9. Inorg. Chem. 2014, 53, 7909–7915. doi: 10.1021/ic500599d

    73. [73]

      Li, H.; Malliakas, C. D.; Peters, J. A.; Liu, Z.; Im, J.; Jin, H.; Morris, C. D.; Zhao, L. D.; Wessels, B. W.; Freeman, A. J.; Kanatzidis, M. G. CsCdInQ3 (Q = Se, Te): new photoconductive compounds as potential materials for hard radiation detection. Chem. Mater. 2013, 25, 2089–2099. doi: 10.1021/cm400634v

  • Figure 1  (a~c) Three independent Lu atoms arranged in three basic chains (namely, chains Ⅰ, Ⅱ and Ⅲ) with the atom numbers marked. (d) 3D framework structure of RbLu5Te8 viewed along the ac-plane with the unit cell marked. 2D [Lu5Te8] layers and chain Ⅲ are outlined by the dashed area

    Figure 2  Local coordination environment of Rb atom in RbLu5Te8.

    Figure 3  Structural evolution from ARE5Q8 to ARE3Q5 and A3RE7Q12

    Figure 4  (a) Crystal structure of CsGdMnTe3 viewed along the ac-plane with the unit cell marked; (b) View of the 2D [GdMnTe3] layer shown approximately along the b-axis with the atom numbers marked (blue: [GdTe6] octahedron; black: [MnTe4] tetrahedron)

    Figure 5  Local coordination environment of Cs atom in CsGdMnTe3

    Figure 6  Calculated band structure of RbLu5Te8. The Fermi level EF is set at 0.0 eV

    Figure 7  Calculated total and partial DOSs of RbLu5Te8

    Figure 8  Calculated band structure of CsGdMnTe3. The Fermi level EF is set at 0.0 eV

    Figure 9  Calculated total and partial DOSs of CsGdMnTe3

    Table 1.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters of RbLu5Te8 and CsGdMnTe3

    Atom Symmetry x y z U(eq)2)a Occu.
    RbLu5Te8
    Rb 2d 0 0.5 0 0.0139(9) 1
    Lu1 2a 0 0 0.5 0.0127(4) 1
    Lu2 4i 0.34447(6) 0 0.52910(13) 0.0121(4) 1
    Lu3 4i 0.29562(6) 0 0.15426(13) 0.0130(4) 1
    Te1 4i 0.23536(9) 0 0.65606(19) 0.0110(5) 1
    Te2 4i 0.16423(9) 0 0.0008(2) 0.0140(5) 1
    Te3 4i 0.08410(9) 0 0.31182(19) 0.0131(5) 1
    CsGdMnTe3
    Cs 4c 0 0.7437(2) 0.25 0.0298(6) 1
    Gd 4a 0 0 0 0.0160(5) 1
    Mn 4c 0 0.4604(3) 0.25 0.0174(2) 1
    Te1 4c 0 0.0594(2) 0.25 0.0156(5) 1
    Te2 8f 0 0.3765(7) 0.0538(2) 0.0174(5) 1
    aU(eq) is defined as one-third of the trace of the orthogonalized Uij tensor.
    下载: 导出CSV

    Table 2.  Selected Bond Lengths (Å) and Bond Angles (°) of RbLu5Te8 and CsGdMnTe3

    RbLu5Te8 CsGdMnTe3
    Bond Dist. Bond Dist.
    Lu(1)–Te(1) × 4 3.004(2) Mn–Te(1) ×2 2.791(3)
    Lu(1)–Te(4) × 2 3.031(2) Mn–Te(2) ×2 2.711(3)
    Lu(2)–Te(1) × 2 2.944(2) Gd–Te(1) ×2 3.1155(8)
    Lu(2)–Te(4) × 2 3.016(2) Gd–Te(2) ×4 3.1186(9)
    Lu(2)–Te(1) 3.027(2) Cs–Te(1) ×2 3.818(2)
    Lu(2)–Te(2) 3.146(2) Cs–Te(2) ×4 3.919(2)
    Lu(2)–Te(2) × 2 2.718(2) Cs–Te(2) ×2 4.114(2)
    Lu(3)–Te(3) 2.965(2)
    Lu(3)–Te(3) × 2 2.968(2)
    Lu(3)–Te(1) 3.031(2)
    Lu(3)–Te(2) × 2 3.127(2)
    Rb–Te(4) × 4 4.004(2)
    Rb–Te(3) × 4 4.212(2)
    Rb–Te(1) × 2 4.266(2)
    Angle (°) Angle (°)
    Te(1)–Lu(1)–Te(1) 91.37(5) Te(1)–Gd–Te(1) 180.0
    Te(1)–Lu(1)–Te(1) 88.63(5) Te(1)–Gd–Te(2) 88.88(3)
    Te(1)–Lu(1)–Te(1) 180.0 Te(1)–Gd–Te(2) 91.12(3)
    Te(1)–Lu(1)–Te(4) 92.35(4) Te(2)–Gd–Te(2) 92.01(4)
    Te(1)–Lu(1)–Te(4) 87.65(4) Te(2)–Gd–Te(2) 180.00(3)
    Te(4)–Lu(2)–Te(4) 93.77(6) Te(2)–Gd–Te(2) 87.99(4)
    Te(4)–Lu(2)–Te(1) 93.85(5) Te(2)–Gd–Te(2) 92.01(4)
    Te(4)–Lu(2)–Te(2) 96.92(5) Te(2)–Mn–Te(2) 117.4(2)
    Te(1)–Lu(2)–Te(2) 164.21(7) Te(2)–Mn–Te(1) 107.99(2)
    Te(4)–Lu(2)–Te(2) 176.06(5) Te(1)–Mn–Te(1) 107.0(2)
    Te(4)–Lu(2)–Te(2) 90.01(4)
    Te(1)–Lu(2)–Te(2) 84.79(5)
    Te(2)–Lu(2)–Te(4) 83.69(5)
    Te(2)–Lu(2)–Te(2) 86.18(6)
    Te(3)–Lu(3)–Te(3) 94.57(5)
    Te(3)–Lu(3)–Te(3) 92.81(6)
    Te(3)–Lu(3)–Te(1) 174.25(6)
    Te(3)–Lu(3)–Te(1) 89.39(5)
    Te(3)–Lu(3)–Te(2) 90.95(5)
    Te(3)–Lu(3)–Te(2) 173.63(6)
    Te(3)–Lu(3)–Te(2) 89.91(4)
    Te(1)–Lu(3)–Te(2) 84.88(5)
    Te(3)–Lu(3)–Te(2) 90.95(5)
    Te(2)–Lu(3)–Te(2) 86.83(5)
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  634
  • HTML全文浏览量:  7
文章相关
  • 发布日期:  2020-10-01
  • 收稿日期:  2020-01-20
  • 接受日期:  2020-02-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章