Gd (Ⅲ), Tb (Ⅲ) and Dy (Ⅲ) Complexes Based on a Nitronyl Nitroxide Radical: Syntheses, Structures and Magnetic Properties

Peng HU Yan-Ni WU Qi-Xiao HUANG Si-Mian LIAN Xing-Hui FU Gao-Peng HE Xia-Min CHEN

Citation:  HU Peng, WU Yan-Ni, HUANG Qi-Xiao, LIAN Si-Mian, FU Xing-Hui, HE Gao-Peng, CHEN Xia-Min. Gd (Ⅲ), Tb (Ⅲ) and Dy (Ⅲ) Complexes Based on a Nitronyl Nitroxide Radical: Syntheses, Structures and Magnetic Properties[J]. Chinese Journal of Inorganic Chemistry, 2016, 32(2): 297-304. doi: 10.11862/CJIC.2016.032 shu

含氮氧自由基的Gd,Tb,Dy配合物的合成、结构及磁性

    通讯作者: 胡鹏, hp8286799@zqu.edu.cn
  • 基金项目:

    广东省大创项目 No.603-60300346

    广东省教育厅科技创新项目 No.2013KJCX0193

    广东省高校创新强校项目 No.504-20000158

摘要: 合成了一个新颖的氮氧自由基配体,并用该配体合成了3例未见文献报道的氮氧自由基-稀土三自旋单核配合物Ln (hfac)3(NIT-Ph-4-OCHCH3CH3)2(Ln=Gd (1), Tb (2), Dy (3); hfac=六氟乙酰丙酮; NIT-Ph-4-OCHCH3CH3=4,4,5,5-四甲基-2-(4′-异丙氧基苯基)-咪唑啉-3-氧化-1-氧基自由基)。单晶结构分析表明配合物123拥有相似的自由基-稀土-自由基单核结构。对配合物的磁性测试结果表明自由基与稀土之间存在着铁磁相互作用。自由基与自由基之间存在着反铁磁相互作用。

English

  • 0   Introduction

    Single-molecule magnets (SMMs) have attracted many scientists attention in the past two decades[1-4]. This type of materials are characterized as slow magnetization relaxation caused by the association of large ground state spin (ST) value with a significant uniaxial (Ising-like) magnetic anisotropy (D), which leads to a significant energy barrier to magnetization reversal (U)[5-7]. The SMMs have been found potential applications for the uses of high-density magnetic memories, magnetic refrigeration, quantum computing devices and spintronics at the molecular level[8-11]. Recently 4f metal ions were considered to be good candidates for the construction of SMMs due to their significant magnetic anisotropy arising from the large, unquenched orbital angular momentum. Up to now, a variety of 4f metal ions based SMMs have been reported[12-17].

    Apart from the choice of the metal ions, the ligand design also plays an important role. The use of organic radical ligands in the creation of new magnetic molecular compounds have attracted much attention since the discovery of the first radical-4f SMM by Gatteschis group[18]. As is well known, the stable radical ligands can generate typically stronger intramolecular magnetic exchange coupling. The strong exchange coupling between lanthanides and radicals generally leads to superior SMMs. Recently, a binuclear Tb (Ⅲ) complex bridged by a N23- radical has been reported with a record blocking temperature of 13.9 K[19-20]. So far various organic radicals such as nitronyl nitroxide, verdazyl and semiquinone radicals have been reported[21-25]. However, researches are focused in particular on the nitronyl nitroxide (NIT) family of radicals, because these type of radicals are relatively stable and easy to obtain derivatives with substituents containing donor atoms. Nitronyl nitroxide radicals can act as bidentate ligands through their identical N-O coordination groups and give rise to complexes with different structures. Unfortunately, NIT radicals are poorly donating ligands, thus utilization of strong electron-withdrawing coligands such as hexafluoroace-tylacetonate (hfac) and trifluoroacetylacetonate (tfac) are necessary. However, the steric demand of these coligands restrict the dimensionality of the resulting metal-radical compounds. So, it is easier to get zero-and one-dimensional compounds by this strategy.

    To further study the magnetic properties of NIT radical-lanthanide compounds, in this paper we report a novel nitronyl nitroxide radical (Scheme 1) and its corresponding Ln-nitronyl nitroxide compounds Ln (hfac)3(NIT-Ph-4-OCHCH3CH3)2(Ln=Gd (1), Tb (2), Dy (3); hfac=hexafluoroacetylacetonate; NIT-Ph-4-OCHCH3CH3=2-(4-isopropoxyphenyl)-4, 4, 5, 5-tetramet-hyl-imidazoline-1-oxyl-3-oxide), their crystal structures and magnetic properties were described in detail.

    Figure Scheme 1.  Molecule structure of NIT-Ph-4-OCHCH3CH3

    1   Experimental

    1.1   Materials and physical measurements

    All the starting chemicals were obtained from Aldrich and used without further purification. The radical ligand NIT-Ph-4-OCHCH3CH3 was prepared according to literature method[26]. Elemental analyses (C, H, N) were determined by Perkin-Elmer 240 elemental analyzer. The infrared spectra was recorded from KBr pellets in the range of 4 000~400 cm-1 with a Bruker Tensor 27 IR spectrometer. The magnetic measurements were carried out with MPMSXL-7 SQUID magnetometer. Diamagnetic corrections were made with Pascals constants for all the constituent atoms.

    1.2   Synthesis of Complex 1

    A solution of Gd (hfac)3·2H2O (0.05 mmol) in 25 mL dry heptane was heated to reflux for 2 h. Then the solution was cooled to about 60 ℃, a solution of NIT-Ph-4-OCHCH3CH3 (0.1 mmol) in 2 mL of CH2Cl2 was added. The resulting solution was stirred for about 3 min and then cooled to room temperature. The filtrate was allowed to stand at room temperature for slow evaporation. After three days, some blue crystals were collected. Yield: 31.4 mg (45.5% based on Gd). Elemental analysis calculated for C47H49F18N4O12Gd (%): C: 41.47; H: 3.63; N: 4.12. Found (%): C: 41.88; H: 3.69; N: 4.22.

    1.3   Synthesis of Complex 2

    Complex 2 was synthesized with the same procedure for complex 1 using Tb (hfac)3·2H2O instead of Gd (hfac)3·2H2O. Yield: 32.7 mg (47.9%). Elemental analysis calculated for C47H49F18N4O12Tb (%): C: 41.42; H: 3.62; N: 4.11. Found (%): C: 40.69; H: 3.57; N: 4.22.

    1.4   Synthesis of Complex 3

    Complex 3 was synthesized with the same procedure for complex 1 using Dy (hfac)3·2H2O instead of Gd (hfac)3·2H2O. Yield: 29.3 mg (42.9%). Elemental analysis calculated for C47H49F18N4O12Dy (%): C: 41.31; H: 3.61; N: 4.10. Found (%): C: 40.91; H: 3.77; N: 4.17.

    1.5   Crystal Structure Determination and Refine-ment

    X-ray single-crystal diffraction data for complexes 1, 2 and 3 were collected using a Rigaku Saturn CCD diffractometer at 113(2) K with Mo radiation (λ=0.071 073 nm). The structure was solved by direct methods by utilizing the program SHELXS-97[27] and refined by full-matrix least-squares methods on F2 with the use of the SHELXL-97 program package[28]. Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The hydrogen atoms were set in calculated positions and refined as riding atoms with a common fixed isotropic thermal parameter. Disordered carbon atoms were observed in the hfac ligands for both compounds and disorders were also observed for some fluorine atoms. Pertinent crystallographic data and structure refinement parameters for these complexes were listed in Table 1. Selected bond lengths and bond angles of complexes 1, 2 and 3 are listed in Table 2.

    Table 1.  Crystal data and structure refinement for 1, 2 and 3
    Complex 1 2 3
    Empirical formula C47H49F18Gd1N4O12 C47H49F18Tb1N4O12 C47H49F18Dy1N4O12
    Formula weight 1 361.15 1 362.82 1 366.40
    Crystal system Triclinic Monoclinic Triclinic
    Space group P1 P21/c P1
    a/nm 1.219 5(6) 1.987 2(4) 1.214 6(10)
    b/nm 1.491 9(7) 1.255 6(3) 1.489 1(12)
    c/nm 1.738 6(7) 2.282 1(5) 1.727 6(13)
    α/(°) 98.890(5) 90 98.842(6)
    β/(°) 103.057(5) 98.865(5) 102.753(6)
    γ/(°) 111.943(3) 90 111.987(14)
    V/nm3 2.756(2) 2.731(4) 2.728(4)
    Z 2 4 2
    Dc/(g•cm-3) 1.64 1.609 1.664
    μ/mm-1 1.325 1.377 1.493
    Rint 0.062 2 0.073 6 0.027 2
    F (000) 1 362 2 728 1 366
    Reflections collected 22 857 46 848 23 418
    Independent reflections 9 649 9 876 9 822
    GOF on F2 1.017 1.032 1.021
    R1a [I > 2σ(I)] 0.026 8 0.053 2 0.037 8
    wR2b [I > 2σ(I)] 0.062 5 0.144 5 0.091 1
       aR1=Σ(‖Fo|-|Fc‖)/Σ|Fo|; bwR2=[Σw (Fo2-Fc2)2/Σw (Fo)2]1/2.
    Table 2.  Selected bond distances (nm) and Angles (°) for 1, 2 and 3
    1
    Gd (1)-O (6) 0.233 0(8) Gd (1)-O (7) 0.233 3(8) O (2)-N (l) 0.127 1(3)
    Gd (1)-O (3) 0.234 5(7) Gd (1)-O (9) 0.235 0(8) O (6)-N (3) 0.130 7(3)
    Gd (1)-O (8) 0.252 9(8) Gd⑴-O (12) 0.239 97(18) O (3)-N (2) 0.130 4(2)
    O (6)-Gd (1)-O (7) 93.24(7) O (7)-Gd (1)-O (3) 105.83(7) O (11)-Gd (1)-O (9) 148.80(6)
    O (6)-Gd (1)-O (11) 102.93(7) O (11)-Gd (1)-O (3) 88.67(7) O (3)-Gd (1)-O (9) 73.27(6)
    0(7)-Gd (l)-0(ll) l36.79(6) 0(6)-Gd (l)-0(9) 76.52(6) 0(6)-Gd (l)-0(l0) 69.66(7)
    0(6)-Gd (l)-0(3) l37.62(6) 0(7)-Gd (l)-0(9) 73.74(6) 0(7)-Gd (l)-0(l0) l45.23(6)
    0(ll)-Gd (l)-0(l0) 77.69(6) 0(3)-Gd (l)-0(l0) 73.46(6)
    2
    Tb (l)-0(4) 0.234 0(3) Tb (l)-0(ll) 0.236 0(3) 0(5)-N (4) 0.l27 4(5)
    Tb (l)-0(2) 0.234 5(3) Tb (l)-0(8) 0.237 4(3) 0(2)-N (2) 0.l3l 7(5)
    Tb (l)-0(7) 0.234 6(3) Tb (l)-0(l2) 0.238 l (4) N (3)-0(4) 0.l3l 7(5)
    0(4)-Tb (l)-0(2) l37.l0(l2) 0(2)-Tb (l)-0(ll) l03.35(l2) 0(7)-Tb (l)-0(8) 72.69(l3)
    0(4)-Tb (l)-0(7) l03.62(l3) 0(7)-Tb (l)-0(ll) l37.94(l2) 0(ll)-Tb (l)-0(8) 74.0l (l2)
    0(2)-Tb (l)-0(7) 90.96(l3) 0(4)-Tb (l)-0(8) 75.98(l2) 0(4)-Tb (l)-0(l2) l49.6l (l2)
    0(4)-Tb (l)-0(ll) 92.38(l3) 0(2)-Tb (l)-0(8) l46.60(l2) 0(2)-Tb (l)-0(l2) 73.00(l2)
    0(7)-Tb (l)-0(l2) 74.68(l3) 0(ll)-Tb (l)-0(l2) 72.28(l3)
    3
    Dy (l)-0(2) 0.232 l (3) Dy (l)-0(8) 0.235 0(3) 0(4)-N (4) 0.l26 9(4)
    Dy (l)-0(9) 0.233 5(3) Dy (l)-0(ll) 0.235 l (3) 0(5)-N (3) 0.l29 7(4)
    Dy (l)-0(l2) 0.234 6(3) Dy (l)-0(5) 0.235 4(3) 0(2)-N (2) 0.l30 4(5)
    0(2)-Dy (l)-0(9) 92.77(ll) 0(9)-Dy (l)-0(8) l36.97(ll) 0(l2)-Dy (l)-0(ll) 74.09(ll)
    0(2)-Dy (l)-0(l2) 69.99(l2) 0(l2)-Dy (l)-0(8) 76.9l (l2) 0(8)-Dy (l)-0(ll) l49.09(ll)
    0(9)-Dy (l)-0(l2) l45.80(ll) 0(2)-Dy (l)-0(ll) 76.58(l2) 0(2)-Dy (l)-0(5) l37.83(ll)
    0(2)-Dy (l)-0(8) l03.30(l2) 0(9)-Dy (l)-0(ll) 73.22(ll) 0(9)-Dy (l)-0(5) l05.9l (l2)
    0(l2)-Dy (l)-0(5) 73.72(ll) 0(8)-Dy (l)-0(5) 88.47(l2)

    CCDC: 985443, 1; 1043098, 2; 985444, 3.

    2   Results and discussion

    2.1   Crystal Structure of Complex 1

    Single-crystal X-ray diffraction analyses reveal that all these three compounds show similar radical-Ln (Ⅲ)-radical structures, which are composed of one Ln (hfac)3 unit and two NIT-Ph-4-OCHCH3CH3 radicals. Compounds 1 and 3 are isostructural and crystallize in the P1 space group, while compound 2 crystallizes in the P21/c space group.

    In complex 1, the central Gd (Ⅲ) ions are eight-coordinate with eight oxygen atoms. Two radical ligands bond to one Gd (Ⅲ) ion via the oxygen atoms of N-O coordination groups. The bond length of Gd (1)-O (6) is 0.234 8 nm while the bond length of Gd (1)-O (3) is 0.237 8 nm. The N (2)-O (3) and N (3)-O (6) bond lengths of nitronyl nitroxide radicals are 0.130 4 nm and 0.130 7 nm, respectively. The uncoordinated N (1)-O (2) and N (4)-O (5) bond lengths are 0.127 1 nm and 0.127 2 nm, respectively, which are comparable to those of reported tri-spin radical-Ln (Ⅲ)-radical complexes[29-35]. The other six oxygen atoms are from three hfacs with the Gd-O bond lengths in the range of 0.236 0~0.242 9 nm. The nearest Gd…Gd distance between the adjacent molecules is 1.024 9 nm (Fig. 1).

    Figure 1.  Molecular structure (left) and crystal packing diagram of complex 1 (right)

    2.2   Crystal structure of complex 2

    The crystal structure of complex 2 shows that the central Tb (Ⅲ) ions are eight-coordinated with eight oxygen atoms. Two radical ligands bond to one Tb (Ⅲ) ion via the oxygen atoms of N-O coordination groups. The bond length of Tb (1)-O (4) is 0.234 1 nm while the bond length of Tb (1)-O (2) is 0.234 5 nm. The N (3)-O (4) and N (2)-O (2) bond lengths of nitronyl nitroxide radicals are 0.131 6 nm and 0.131 8 nm respectively. The uncoordinated N (1)-O (1) and N (4)-O (5) bond lengths are 0.128 3 nm and 0.127 3 nm, respectively, which are comparable to those of reported tri-spin radical-Ln (Ⅲ)-radical complexes[29-35]. The other six oxygen atoms are from three hfacs with the Tb-O bond lengths in the range of 0.234 6~0.241 7 nm. The nearest Tb…Tb distance between the adjacent molecules is 1.080 8 nm, which is a little bit longer than that for complex 1 (Fig. 2).

    Figure 2.  Molecular structure (left) and crystal packing diagram of complex 2 (right)

    2.3   Crystal Structure of Complex 3

    Compound 3 is isostructural to compound 1 and the bond lengths of Dy-O are in the range of 0.232 1~0.239 3 nm, which are a little shorter than the bond lenths of Gd-O.

    2.4   Magnetic Properties of Complex 1

    Variable-temperature magnetic susceptibilities of complexes 1, 2, and 3 were measured from 300 to 2.0 K in an applied field of 1 kOe. The χMT vs T plot for 1 are shown in Fig. 3. At 300 K, the χMT value is 8.77 cm3·K·mol-1, close to the theoretical value of 8.63 cm3·K·mol-1 (Uncoupled one Gd (Ⅲ) ion, f7 electron configuration, χMT=7.88 cm3·K·mol-1) plus two organic radicals (S=1/2, χMT=0.375 cm3·K·mol-1)). Upon cooling, the χMT value of complex 1 increases steadily to a maximum of 10.04 cm3·K·mol-1 at 15 K, afterward decreases to 9.28 cm3·K·mol-1 at 2.0 K.

    Figure 3.  Temperature dependence of χMT for complex 1

    As shown in Scheme 2, there are two kinds of magnetic interactions in this radical-Gd (Ⅲ)-radical complex at the same time. The first one is Gd (Ⅲ)-radical interaction and the second one is radical-radical interaction.

    Figure Scheme 2.  Model of intramolecular interactions

    The magnetic interactions between Gd (Ⅲ) and the radicals can be described by isotropic exchange interaction. Thus the experimental data for complex 1 can be analyzed with an expression derived from a spin Hamiltonian. Considering the g value range of the radical and Gd (Ⅲ) ion, we assume that the radical and Gd (Ⅲ) ion have the same g value. Thus the variable-temperature magnetic susceptibility data for complex 1 can be analyzed by a theoretical expression (Eq.2) deduced from a spin Hamiltonian (Eq.1)[30-35].

    The best fitting leads to g=2.00, JRad-Gd=2.57 cm-1, JRad-Rad=-9.98 cm-1 for complex 1. The positive value of JRad-Gd indicates that there is a weak ferromagnetic interaction between the Gd (Ⅲ) and the radicals in the molecule. The negative JRad-Rad indicates the antiferromagnetic interaction between the two intramolecular radicals. The obtained J value is comparable with the previously reported Gd-radicals compounds[30-35].

    2.5   Magnetic properties of complex 2

    While for complex 2 (Fig. 4), at 300 K, the χMT value is 13.08 cm3·K·mol-1, close to the theoretical value 12.57 cm3·K·mol-1 in uncoupled system of one Tb (Ⅲ) ion (f9 electron configuration, χMT=11.82 cm3·K·mol-1) plus two organic radical (S=1/2, χMT=0.375 cm3·K·mol-1). Upon cooling, the χMT value of complex 2 increases steadily to a maximum of 28.62 cm3·K·mol-1 at 3.0 K, afterward the value decreases to 28.54 cm3·K·mol-1 at 2.0 K. The increase of χMT suggests the presence of ferromagnetic interaction between the Tb (Ⅲ) and the organic radical. The decrease of χMT at low temperature indicates the antiferromagnetic interaction between the two intramolecular radicals. The magnetic properties of complex 2 are similar to those of previously reported[29-35].

    Figure 4.  Temperature dependence of χMT for complex 2

    Alternating current (ac) susceptibility measure-ments for complex 2 were carried out in low temperature regime under a zero dc field to investigate the dynamics of the magnetization. As shown in Fig. 5, there are no obvious frequency dependent out-of-phase signals. We do not think that complex 2 express SMM behavior at low temperature. This may due to the small energy barrier which could not prevent the inversion of spin.

    Figure 5.  Temperature dependence of the in-phase and out-of-phase components of ac susceptibility for 2 in zero dc field with an oscillation of 3.5 Oe

    2.6   Magnetic properties of complex 3

    Complex 3 shows similar magnetic properties with complex 1 (Fig. 6). At 300 K, the χMT value is 15.01 cm3·K·mol-1, close to the theoretical value of 14.92 cm3·K·mol-1. Upon cooling, the χMT value of complex 3 increases steadily to a maximum of 19.79 cm3·K·mol-1 at 15.4 K, afterward decreases to 16.97 cm3·K·mol-1 at 2.0 K. The plot also suggests the presence of ferromagnetic interaction between the Dy (Ⅲ) and the coordinated N-O groups of the organic radicals and the antiferromagnetic interaction between the two intramolecular radicals.

    Figure 6.  Temperature dependence of χMT for complexes 3

    Alternating current (ac) susceptibility measure-ments for complex 3 were also carried out in low temperature regime under a zero dc field. The result (Fig. 7) shows that there are no obvious frequency dependent out-of-phase signals. Like complex 2, complex 3 doesnt express SMMs behavior at low temperature.

    Figure 7.  Temperature dependence of the in-phase and out-of-phase components of ac susceptibility for 3 in zero dc field with an oscillation of 3.5 Oe

    3   Conclusions

    A novel nitronyl nitroxide radical and its three corresponding mononuclear tri-spin compounds Ln (hfac)3(NIT-Ph-4-OCHCH3CH3)2 (Ln=Gd (1), Tb (2), Dy (3).) have been synthesized and characterized. The magnetic studies reveal that ferromagnetic interactions (between the intramolecular Ln and radical) and antiferromagnetic interactions (between the intramole-cular radicals) are coexist in these complexes. Complexes 2 and 3 do not have SMMs behavior at low temperature, this may due to the small energy barrier which could not prevent the inversion of spin.

    1. [1]

      Kahn O. Molecular Magnetism. New York: Wiley-VCH, 1993.

    2. [2]

      Moller S, Perlov C, Jackson W, et al. Nature, 2003, 426:166-169 doi: 10.1038/nature02070

    3. [3]

      Kahn M L, Sutter J P, Golhen S, et al. J. Am. Chem. Soc., 2000, 122:3413-3421 doi: 10.1021/ja994175o

    4. [4]

      Zhang P, Guo Y N, Tang J K. Coord. Chem. Rev., 2013, 257: 1728-1737 doi: 10.1016/j.ccr.2013.01.012

    5. [5]

      Ruiz-Molina D, Mas-Torrent M, Gómez J, et al. Adv. Mater., 2003, 15:42-49 doi: 10.1002/(ISSN)1521-4095

    6. [6]

      Clemente-León M, Soyer H, Coronado E, et al. Angew. Chem. Int. Ed., 1998, 37:2842-2845 doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Cornia A, Fabretti A C, Pacchioni M, L, et al. Angew. Chem. Int. Ed., 2003, 42:1645-1651 doi: 10.1002/anie.200350981

    8. [8]

      Gatteschi D, Caneschi A, Pardi L, et al. Science, 1994, 265: 1054-1058 doi: 10.1126/science.265.5175.1054

    9. [9]

      Bar A K, Pichon C, Gogoi N, et al. Chem. Commun., 2015, 51:3616-3619 doi: 10.1039/C4CC10182K

    10. [10]

      Liu R N, Li L C, Wang X L, et al. Chem. Commun., 2010, 46:2566-2570 doi: 10.1039/b918554b

    11. [11]

      Bogani L, Wernsdorfer W. Nat. Mater., 2008, 7:179-183 doi: 10.1038/nmat2133

    12. [12]

      Caneschi A, Gatteschi D, Lalioti N, et al. Angew. Chem. Int. Ed., 2001, 40:1760-1793 doi: 10.1002/(ISSN)1521-3773

    13. [13]

      Bogani L, Sangregorio C, Sessoli R, et al. Angew. Chem. Int. Ed., 2005, 44:5817-5821 doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Bernot K, Luzon J, Bogani L, et al. J. Am. Chem. Soc., 2009, 131:5573-5579 doi: 10.1021/ja8100038

    15. [15]

      Liu J L, Wu J Y, Chen Y C, et al. Angew. Chem. Int. Ed., 2014, 53:12966-12970 doi: 10.1002/anie.201407799

    16. [16]

      Chatelain L, Walsh J P S, Pecaut J, et al. Angew. Chem. Int. Ed., 2014, 53:13434-13439 doi: 10.1002/anie.201407334

    17. [17]

      Zhang P, Zhang L, Wang C. J. Am. Chem. Soc., 2014, 136: 4484-4489 doi: 10.1021/ja500793x

    18. [18]

      Poneti G, Bernot K, Bogani L, et al. Chem. Commun., 2007 1807-1809

    19. [19]

      Rinehart J D, Fang M, Evans W J, et al. J. Am. Chem. Soc., 2011, 133:14236-14239 doi: 10.1021/ja206286h

    20. [20]

      Rinehart J D, Fang M, Evans W J, et al. Nat. Chem., 2011, 3:538-542 doi: 10.1038/nchem.1063

    21. [21]

      Chernick E T, Casillas R, Zirzlmeier J, et al. J. Am. Chem. Soc., 2015, 137:857-863 doi: 10.1021/ja510958k

    22. [22]

      Mailman A, Winter S M, Wong J W L, et al. J. Am. Chem. Soc., 2015, 137:1044-1049 doi: 10.1021/ja512235h

    23. [23]

      Wang X F, Hu P, Li Y G, et al. Chem. Asian J., 2015, 10: 325-330 doi: 10.1002/asia.v10.2

    24. [24]

      Zhu M, Hu P, Li Y, et al. Chem. Eur. J., 2014, 20:13356-13364 doi: 10.1002/chem.201403581

    25. [25]

      Wang Z X, Zhang X, Zhang Y Z, et al. Angew. Chem. Int. Ed., 2014, 53:11567-11570 doi: 10.1002/anie.201407628

    26. [26]

      Ullman E F, Osiecki J H, Boocock D G B, et al. J. Am. Chem. Soc., 1972, 94:7049-7059 doi: 10.1021/ja00775a031

    27. [27]

      Sheldrick G M. SHELXS-97: Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997. http://www.oalib.com/references/16733729

    28. [28]

      Sheldrick G M. SHELXL-97: Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997. http://www.oalib.com/references/13283787

    29. [29]

      Hu P, Zhang C, Gao Y, et al. Inorg. Chim. Acta, 2013, 398: 136-140 doi: 10.1016/j.ica.2012.12.025

    30. [30]

      Zhou N, Ma Y, Wang C, et al. Dalton Trans., 2009:8489-8492

    31. [31]

      Wang C, Wang Y L, Qin Z X, et al. Inorg. Chem. Commun., 2012, 20:112-117 doi: 10.1016/j.inoche.2012.02.030

    32. [32]

      Zhang C X, Chen H W, Wang W M, et al. Inorg. Chem. Commun., 2012, 24:177-181 doi: 10.1016/j.inoche.2012.07.003

    33. [33]

      Du F X, Hu P, Gao Y Y, et al. Inorg. Chem. Commun., 2014, 48:166-170 doi: 10.1016/j.inoche.2014.08.035

    34. [34]

      Zhang C X, Qiao X M, Kong Y K, et al. J. Mol. Struct., 2015, 108:1348-1354

    35. [35]

      Li L L, Liu S, Zhang Y, et al. Dalton Trans., 2015, 44:6118-6125 doi: 10.1039/C4DT03941F

  • Scheme 1  Molecule structure of NIT-Ph-4-OCHCH3CH3

    Figure 1  Molecular structure (left) and crystal packing diagram of complex 1 (right)

    Thermal ellipsoids are drawn at 30% probability; All hydrogen atoms and fluorine atoms are omitted for clarity

    Figure 2  Molecular structure (left) and crystal packing diagram of complex 2 (right)

    Thermal ellipsoids are drawn at 30% probability; All hydrogen atoms and fluorine atoms are omitted for clarity

    Figure 3  Temperature dependence of χMT for complex 1

    The solid lines represent the theoretical values based on the corresponding equations

    Scheme 2  Model of intramolecular interactions

    Figure 4  Temperature dependence of χMT for complex 2

    Figure 5  Temperature dependence of the in-phase and out-of-phase components of ac susceptibility for 2 in zero dc field with an oscillation of 3.5 Oe

    Figure 6  Temperature dependence of χMT for complexes 3

    Figure 7  Temperature dependence of the in-phase and out-of-phase components of ac susceptibility for 3 in zero dc field with an oscillation of 3.5 Oe

    Table 1.  Crystal data and structure refinement for 1, 2 and 3

    Complex 1 2 3
    Empirical formula C47H49F18Gd1N4O12 C47H49F18Tb1N4O12 C47H49F18Dy1N4O12
    Formula weight 1 361.15 1 362.82 1 366.40
    Crystal system Triclinic Monoclinic Triclinic
    Space group P1 P21/c P1
    a/nm 1.219 5(6) 1.987 2(4) 1.214 6(10)
    b/nm 1.491 9(7) 1.255 6(3) 1.489 1(12)
    c/nm 1.738 6(7) 2.282 1(5) 1.727 6(13)
    α/(°) 98.890(5) 90 98.842(6)
    β/(°) 103.057(5) 98.865(5) 102.753(6)
    γ/(°) 111.943(3) 90 111.987(14)
    V/nm3 2.756(2) 2.731(4) 2.728(4)
    Z 2 4 2
    Dc/(g•cm-3) 1.64 1.609 1.664
    μ/mm-1 1.325 1.377 1.493
    Rint 0.062 2 0.073 6 0.027 2
    F (000) 1 362 2 728 1 366
    Reflections collected 22 857 46 848 23 418
    Independent reflections 9 649 9 876 9 822
    GOF on F2 1.017 1.032 1.021
    R1a [I > 2σ(I)] 0.026 8 0.053 2 0.037 8
    wR2b [I > 2σ(I)] 0.062 5 0.144 5 0.091 1
       aR1=Σ(‖Fo|-|Fc‖)/Σ|Fo|; bwR2=[Σw (Fo2-Fc2)2/Σw (Fo)2]1/2.
    下载: 导出CSV

    Table 2.  Selected bond distances (nm) and Angles (°) for 1, 2 and 3

    1
    Gd (1)-O (6) 0.233 0(8) Gd (1)-O (7) 0.233 3(8) O (2)-N (l) 0.127 1(3)
    Gd (1)-O (3) 0.234 5(7) Gd (1)-O (9) 0.235 0(8) O (6)-N (3) 0.130 7(3)
    Gd (1)-O (8) 0.252 9(8) Gd⑴-O (12) 0.239 97(18) O (3)-N (2) 0.130 4(2)
    O (6)-Gd (1)-O (7) 93.24(7) O (7)-Gd (1)-O (3) 105.83(7) O (11)-Gd (1)-O (9) 148.80(6)
    O (6)-Gd (1)-O (11) 102.93(7) O (11)-Gd (1)-O (3) 88.67(7) O (3)-Gd (1)-O (9) 73.27(6)
    0(7)-Gd (l)-0(ll) l36.79(6) 0(6)-Gd (l)-0(9) 76.52(6) 0(6)-Gd (l)-0(l0) 69.66(7)
    0(6)-Gd (l)-0(3) l37.62(6) 0(7)-Gd (l)-0(9) 73.74(6) 0(7)-Gd (l)-0(l0) l45.23(6)
    0(ll)-Gd (l)-0(l0) 77.69(6) 0(3)-Gd (l)-0(l0) 73.46(6)
    2
    Tb (l)-0(4) 0.234 0(3) Tb (l)-0(ll) 0.236 0(3) 0(5)-N (4) 0.l27 4(5)
    Tb (l)-0(2) 0.234 5(3) Tb (l)-0(8) 0.237 4(3) 0(2)-N (2) 0.l3l 7(5)
    Tb (l)-0(7) 0.234 6(3) Tb (l)-0(l2) 0.238 l (4) N (3)-0(4) 0.l3l 7(5)
    0(4)-Tb (l)-0(2) l37.l0(l2) 0(2)-Tb (l)-0(ll) l03.35(l2) 0(7)-Tb (l)-0(8) 72.69(l3)
    0(4)-Tb (l)-0(7) l03.62(l3) 0(7)-Tb (l)-0(ll) l37.94(l2) 0(ll)-Tb (l)-0(8) 74.0l (l2)
    0(2)-Tb (l)-0(7) 90.96(l3) 0(4)-Tb (l)-0(8) 75.98(l2) 0(4)-Tb (l)-0(l2) l49.6l (l2)
    0(4)-Tb (l)-0(ll) 92.38(l3) 0(2)-Tb (l)-0(8) l46.60(l2) 0(2)-Tb (l)-0(l2) 73.00(l2)
    0(7)-Tb (l)-0(l2) 74.68(l3) 0(ll)-Tb (l)-0(l2) 72.28(l3)
    3
    Dy (l)-0(2) 0.232 l (3) Dy (l)-0(8) 0.235 0(3) 0(4)-N (4) 0.l26 9(4)
    Dy (l)-0(9) 0.233 5(3) Dy (l)-0(ll) 0.235 l (3) 0(5)-N (3) 0.l29 7(4)
    Dy (l)-0(l2) 0.234 6(3) Dy (l)-0(5) 0.235 4(3) 0(2)-N (2) 0.l30 4(5)
    0(2)-Dy (l)-0(9) 92.77(ll) 0(9)-Dy (l)-0(8) l36.97(ll) 0(l2)-Dy (l)-0(ll) 74.09(ll)
    0(2)-Dy (l)-0(l2) 69.99(l2) 0(l2)-Dy (l)-0(8) 76.9l (l2) 0(8)-Dy (l)-0(ll) l49.09(ll)
    0(9)-Dy (l)-0(l2) l45.80(ll) 0(2)-Dy (l)-0(ll) 76.58(l2) 0(2)-Dy (l)-0(5) l37.83(ll)
    0(2)-Dy (l)-0(8) l03.30(l2) 0(9)-Dy (l)-0(ll) 73.22(ll) 0(9)-Dy (l)-0(5) l05.9l (l2)
    0(l2)-Dy (l)-0(5) 73.72(ll) 0(8)-Dy (l)-0(5) 88.47(l2)
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  293
  • HTML全文浏览量:  15
文章相关
  • 发布日期:  2016-02-10
  • 收稿日期:  2015-06-20
  • 修回日期:  2015-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章