细胞色素C与NO的反应机制

唐乾 史珊珊 曹洪玉 郭相金 张涛 郑学仿

引用本文: 唐乾, 史珊珊, 曹洪玉, 郭相金, 张涛, 郑学仿. 细胞色素C与NO的反应机制[J]. 无机化学学报, 2015, 31(8): 1511-1519. doi: 10.11862/CJIC.2015.216 shu
Citation:  TANG Qian, SHI Shan-Shan, CAO Hong-Yu, GUO Xiang-Jin, ZHANG Tao, ZHENG Xue-Fang. Reaction Mechanism of Cytochrome C with NO[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(8): 1511-1519. doi: 10.11862/CJIC.2015.216 shu

细胞色素C与NO的反应机制

    通讯作者: 郑学仿,E-mail:dlxfzheng@126.com
  • 基金项目:

    国家自然科学基金 (No.21271036, 20871024) (No.21271036, 20871024)

    辽宁省教育厅科学技术研究 (No.L2013470, L2013471)资助项目。 (No.L2013470, L2013471)

摘要: 细胞色素C(Cytochrome C,Cyt C)与NO(由NO供体药物proliNONOate提供)之间的反应已在电化学和医疗方面受到重视,而直接与NO气体作用尚未得到关注;且前者主要是从Q带进行分析的,Soret带未提及。本文采用紫外-可见(UV-Vis)吸收光谱、电子顺磁共振(EPR)光谱、紫外可见时间过程光谱以及同步荧光光谱等方法同时分析了其Soret带与Q带的变化,探讨了不同价态的Cyt C与NO气体结合及解离反应的过程。结果表明:Cyt C与NO相互作用时,无论是高铁细胞色素C(ferric cytochrome C,Fe(Ⅲ)-Cyt C)还是亚铁细胞色素C(ferrous cytochrome C,Fe(Ⅱ)-Cyt C),反应产物都是细胞色素C配合物(Cyt C-NO);Fe(Ⅱ)-Cyt C先被NO氧化生成Fe(Ⅲ)-Cyt C,之后再与NO结合生成Cyt C-NO,Fe(Ⅲ)-Cyt C则直接与NO结合生成Cyt C-NO。Cyt C-NO是一种不稳定的配合物,当通入少量NO时Cyt C-NO很快解离生成Fe(Ⅲ)-Cyt C,其解离速率为(0.005 07±0.001) s-1,是与供体药物结合所形成配合物解离速率的十分之一;NO过量时,生成的Cyt C-NO不会再发生解离。对实验结果分析,得出Cyt C与NO配位反应机制为溶液中的NO进入Heme腔内,Fe-S断裂,Fe-N间形成新的配位键,NO气体可以直接与Cyt C反应,生成的配合物比供体药物稳定,同时Soret带具有明显变化。这对于利用NO来缓解细胞内的氧化压以及利用NO检测细胞内呼吸类酶的变化,进而检测细胞凋亡具有重要意义。

English

  • 
    1. [1] Wittenberg B. J. Physiol. Rev., 1970,50(4):559-636[1] Wittenberg B. J. Physiol. Rev., 1970,50(4):559-636

    2. [2] Hills B A. Science, 1973,182(4114):823-825[2] Hills B A. Science, 1973,182(4114):823-825

    3. [3] Cassina A M, Hodara R, Souza J M, et al. J. Biol. Chem., 2000,275(28):21409-21415[3] Cassina A M, Hodara R, Souza J M, et al. J. Biol. Chem., 2000,275(28):21409-21415

    4. [4] Soldatova A V, Ibrahim M, Olson J S, et al. J. Am. Chem. Soc., 2010,132(13):4614-4625[4] Soldatova A V, Ibrahim M, Olson J S, et al. J. Am. Chem. Soc., 2010,132(13):4614-4625

    5. [5] Rong Z, Cooper C E. Adv. Exp. Med. Biol., 2013,789:361-368[5] Rong Z, Cooper C E. Adv. Exp. Med. Biol., 2013,789:361-368

    6. [6] Larson S K, Dwyer D S, Lo H H, et al. Biochem. Biophys. Res. Commun., 2006,342(3):991-995[6] Larson S K, Dwyer D S, Lo H H, et al. Biochem. Biophys. Res. Commun., 2006,342(3):991-995

    7. [7] Godoy L C, Munoz-Pinedo C, Castro L, et al. PNAS USA, 2009,106(8):2653-2658[7] Godoy L C, Munoz-Pinedo C, Castro L, et al. PNAS USA, 2009,106(8):2653-2658

    8. [8] Kanokwiroon K, Chatpun S. J. Asian Trans. Sci., 2014,8(2):100-104[8] Kanokwiroon K, Chatpun S. J. Asian Trans. Sci., 2014,8(2):100-104

    9. [9] Basu S, Keszler A, Azarova N A, et al. Free Radical Biol. Med., 2010,48(2):255-263[9] Basu S, Keszler A, Azarova N A, et al. Free Radical Biol. Med., 2010,48(2):255-263

    10. [10] Basu S, Azarova N A, Font M D, et al. J. Biol. Chem., 2008,283(47):32590-32597[10] Basu S, Azarova N A, Font M D, et al. J. Biol. Chem., 2008,283(47):32590-32597

    11. [11] Jaeheung Park T L, Manho L. J. Phys. Chem. B, 2013:12039-12050[11] Jaeheung Park T L, Manho L. J. Phys. Chem. B, 2013:12039-12050

    12. [12] Herold S, Exner M, Nauser T. Biochemistry, 2001,40(11):3385-3395[12] Herold S, Exner M, Nauser T. Biochemistry, 2001,40(11):3385-3395

    13. [13] Yukl E T, Vries S, Moënne-Loccoz P. J. Am. Chem. Soc., 2009,131(21):7234-7235[13] Yukl E T, Vries S, Moënne-Loccoz P. J. Am. Chem. Soc., 2009,131(21):7234-7235

    14. [14] Gow A J, Luchsinger B P, Pawloski J R, et al. PNAS USA, 1999,96(16):9027-9032[14] Gow A J, Luchsinger B P, Pawloski J R, et al. PNAS USA, 1999,96(16):9027-9032

    15. [15] Kruglik S G, Yoo B K, Franzen S, et al. PNAS USA, 2010, 107(31):13678-13683[15] Kruglik S G, Yoo B K, Franzen S, et al. PNAS USA, 2010, 107(31):13678-13683

    16. [16] Sharpe M A, Cooper C E. Biochem. J., 1998,332(1):9-19[16] Sharpe M A, Cooper C E. Biochem. J., 1998,332(1):9-19

    17. [17] Silkstone R S, Mason M G, Nicholls P, et al. Radical Bio. Med., 2012,52(1):80-87[17] Silkstone R S, Mason M G, Nicholls P, et al. Radical Bio. Med., 2012,52(1):80-87

    18. [18] Kim J, Park J, Lee T, et al. J. Phy. Chem. B, 2012,116(46):13663-13671[18] Kim J, Park J, Lee T, et al. J. Phy. Chem. B, 2012,116(46):13663-13671

    19. [19] Jitkaew S, Witasp E, Zhang S, et al. J. Leukocyte Biol., 2009,85(3):427-437[19] Jitkaew S, Witasp E, Zhang S, et al. J. Leukocyte Biol., 2009,85(3):427-437

    20. [20] Kagan V E, Bayir A, Bayir H, et al. Mol. Nutr. Food. Res., 2009,53(1):104-114[20] Kagan V E, Bayir A, Bayir H, et al. Mol. Nutr. Food. Res., 2009,53(1):104-114

    21. [21] Kagan V E, Bayir H A, Belikova N A, et al. Free Radical Biol. Med., 2009,46(11):1439-1453[21] Kagan V E, Bayir H A, Belikova N A, et al. Free Radical Biol. Med., 2009,46(11):1439-1453

    22. [22] Grubina R, Basu S, Tiso M, et al. J. Biol. Chem., 2008,283(6):3628-3638[22] Grubina R, Basu S, Tiso M, et al. J. Biol. Chem., 2008,283(6):3628-3638

    23. [23] Margoliash E, Frohwirt N. J. Biochem., 1959,71(3):570-572[23] Margoliash E, Frohwirt N. J. Biochem., 1959,71(3):570-572

    24. [24] Zhao X J, Sampath V, Caughey W S. Biochem. Biophys. Res. Commun, 1994,204(2):537-543[24] Zhao X J, Sampath V, Caughey W S. Biochem. Biophys. Res. Commun, 1994,204(2):537-543

    25. [25] Gray A L, Raphael A L. Proc. Struct. Funct. Genet., 1989,6(3):338-340[25] Gray A L, Raphael A L. Proc. Struct. Funct. Genet., 1989,6(3):338-340

    26. [26] Stellwagen E, Cass R. Biochem. Biophys. Res. Commun, 1974,60(1):371-375[26] Stellwagen E, Cass R. Biochem. Biophys. Res. Commun, 1974,60(1):371-375

    27. [27] WANG Cui-Ping(王翠平), YE Liu(叶柳), XIE Jian-An (谢建安), et al. Res. Explor. Lab.(实验室研究与探索), 2013,32(5):5-7[27] WANG Cui-Ping(王翠平), YE Liu(叶柳), XIE Jian-An (谢建安), et al. Res. Explor. Lab.(实验室研究与探索), 2013,32(5):5-7

    28. [28] Kapralov A A, Kurnikov I V, Vlasova I I, et al. Biochem., 2007,49(46):14232-14244[28] Kapralov A A, Kurnikov I V, Vlasova I I, et al. Biochem., 2007,49(46):14232-14244

    29. [29] Smagghe B J, Trent J T, et al. PLoS One, 2008,3(4):1-10[29] Smagghe B J, Trent J T, et al. PLoS One, 2008,3(4):1-10

    30. [30] Jayakumari N R, Reghuvaran A C, et al. Biol. Chem., 2014, 08(2):35-44[30] Jayakumari N R, Reghuvaran A C, et al. Biol. Chem., 2014, 08(2):35-44

    31. [31] Orii Y, Shimada H. J. Biochem., 1978,84(6):1543-1552[31] Orii Y, Shimada H. J. Biochem., 1978,84(6):1543-1552

    32. [32] Balakrishnan G, Hu Y, Oyerinde O F, et al. J. Am. Chem. Soc., 2007,129(3):504-505[32] Balakrishnan G, Hu Y, Oyerinde O F, et al. J. Am. Chem. Soc., 2007,129(3):504-505

    33. [33] JIAN Ju(剑菊), QU Xiao-Gang(曲小刚), LU Tian-Hong (陆天红), et al. Chem. J. Chinese Universities(高等学校化学学报), 1995,16(8):1270-1274[33] JIAN Ju(剑菊), QU Xiao-Gang(曲小刚), LU Tian-Hong (陆天红), et al. Chem. J. Chinese Universities(高等学校化学学报), 1995,16(8):1270-1274

    34. [34] George T, Doreen W S, English A M, et al. Biochemistry, 1998,37(7):2004-2016[34] George T, Doreen W S, English A M, et al. Biochemistry, 1998,37(7):2004-2016

    35. [35] Takano T, Dickerson R E. J. Mol. Biol., 1981,153(1):95-115[35] Takano T, Dickerson R E. J. Mol. Biol., 1981,153(1):95-115

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  1137
  • HTML全文浏览量:  288
文章相关
  • 收稿日期:  2014-09-05
  • 网络出版日期:  2015-05-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章