利用固溶体和异质结的协同效应增强BiOBr0.5I0.5/BiOI分子氧活化能力光催化去除NO

寇明璞 邓宇 张如梦 王丽 Po Keung Wong 苏凤云 叶立群

引用本文: 寇明璞,  邓宇,  张如梦,  王丽,  Po Keung Wong,  苏凤云,  叶立群. 利用固溶体和异质结的协同效应增强BiOBr0.5I0.5/BiOI分子氧活化能力光催化去除NO[J]. 催化学报, 2020, 41(10): 1480-1487. doi: 10.1016/S1872-2067(20)63607-5 shu
Citation:  Mingpu Kou,  Yu Deng,  Rumeng Zhang,  Li Wang,  Po Keung Wong,  Fengyun Su,  Liqun Ye. Molecular oxygen activation enhancement by BiOBr0.5I0.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal[J]. Chinese Journal of Catalysis, 2020, 41(10): 1480-1487. doi: 10.1016/S1872-2067(20)63607-5 shu

利用固溶体和异质结的协同效应增强BiOBr0.5I0.5/BiOI分子氧活化能力光催化去除NO

  • 基金项目:

    国家自然科学基金(51872147,21671113);高等学校学科创新引智计划(D20015);河南省高校科技创新团队支持计划(19IRTSTHN025).

摘要: 层状卤氧化铋(BiOX,X=Br,I和Cl)光催化剂在可见光下具有优异的分子氧活化性,因而对NO的去除具有较好的光催化活性.为了进一步增强其光催化性能,人们设计了一些改性结构的卤氧化铋光催化剂,并显示出了较强的光催化活性.固溶体和异质结是通过提高激子和载流子的分离效率来增强分子氧活化的有效策略.我们前期工作表明,固溶体BiOBr0.5I0.5和异质结材料BiOBr/BiOI因其特殊的结构而提高了分子氧活化的光催化活性.然而,固溶体和异质结的协同效应是否可以用于光催化去除NO尚不确定.
因此,本文采用一锅热法设计和制备了固溶体和异质结共存的催化剂BiOBr0.5I0.5/BiOI,运用X射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)表征了其基本结构.BiOBr0.5I0.5/BiOI与BiOBr0.5I0.5和BiOI的光致发光光谱(PL)结果表明,BiOBr0.5I0.5/BiOI较弱的电子空穴复合能力及其增多的光催化载流子,与其较高的光电流强度和较小的阻抗结果相符合.活性氧的测定是证实光催化过程中分子氧活化的最直接证据.据报道,在激子和载流子光催化过程中存在两种主要的典型产物:单线态氧(1O2)和超氧自由基(·O2-).更多的1O2和·O2-的产生意味着分子氧活化能力的增强.我们用ESR光谱与化合物3',3',5,5'-四甲基联苯胺(TMB)和硝基蓝四氮唑(NBT)一起评价了1O2和·O2-的生成.对于1O2和·O2-,BiOBr0.5I0.5/BiOI比BiOBr0.5I0.5和BiOI具有更强的ESR信号.结果表明,由于固溶体结构光催化增强的激子和异质结的存在,BiOBr0.5I0.5/BiOI在可见光照射下产生更多的1O2和·O2-.另一方面,ROS定量实验也支持该结果.因此,固溶体和异质结的协同作用提高了分子氧活化能力,从而提高了BiOBr0.5I0.5/BiOI的光催化NO去除效率.
采用不同诱捕剂的实验探索了BiOBr0.5I0.5/BiOI光催化NO去除过程.与无捕获剂的NO去除效率(36.2%)相比,加入三乙醇胺(13.2%),2'2'6'6'-四甲基哌啶氮氧化物(TEMPO,10.2%)和苯醌(BQ,7.1%)时,光催化NO去除效率明显下降.通过傅里叶红外光谱(FT-IR)进一步证实光催化NO的去除过程.基于上述实验结果,我们提出了光催化NO的去除过程.第一步,由异质结引起的电场将促进光生电子和空穴分离,通过载流子光催化转移.然后,h+与NO反应生成NO+作为中间产物.同时,O2与e-结合产生·O2-.另一方面,BiOBr0.5I0.5固溶体具有独特的层状结构,因此具有强烈的电子空穴相互作用,通过能量转移过程促进了1O2的产生.第二步,1O2和·O2-促进了BiOBr0.5I0.5/BiOI对NO氧化至NO2的良好光催化氧化活性.最后,NO2可以与水反应生成硝酸和亚硝酸.
这是首次报道固溶体和异质结的协同光催化去除NO.它为提高BIOX(X=Br,I和Cl)的光催化活性提供了一个建设性的思路.

English

    1. [1] J. J. West, A. Cohen, F. Dentener, B. Brunekreef, T. Zhu, B. Armstrong, M. L. Bell, M. Brauer, G. R. Carmichael, D. L. Costa, D. W. Dockery, M. Kleeman, M. Krzyzanowski, N. Kunzli, C. Liousse, S. C. C. Lung, R. V. Martin, U. Poschl, C. A. Pope, J. M. Roberts, A. G. Russell, C. Wiedinmyer, Environ. Sci. Technol., 2016, 50, 4895-4904.

    2. [2] K. Van Ryswyk, A.T. Anastasopolos, G. Evans, L. Sun, K. Sabaliauskas, R. Kulka, L. Wallace, S. Weichenthal, Environ. Sci. Technol., 2017, 51, 5713-5720.

    3. [3] R. Hao, Y. Zhao, B. Yuan, S. Zhou, S. Yang, J. Hazard. Mater., 2016, 318, 224-232.

    4. [4] Z. Xiao, B. Shen, S. Feng, X. Zhang, S. Meng, Y. Peng, Chem. Eng. J., 2017, 326, 551-560.

    5. [5] J. Zhao, C. Zhang, M. Li, S. Li, L. Wei, S. Zhang, Energy Fuels, 2017, 31, 8454-8461.

    6. [6] G. Dong, L. Zhao, X. Wu, M. Zhu, F. Wang, Appl. Catal. B, 2019, 245, 459-468.

    7. [7] M. Zhou, G. Dong, F. Yu, Y. Huang, Appl. Catal. B, 2019, 256, 117825.

    8. [8] L. Zhao, G. Dong, L. Zhang, Y. Lu, Y. Huang, ACS Appl. Mater. Interfaces, 2019, 11, 10042-10051.

    9. [9] B. Lin, S. Chen, F. Dong, G. Yang, Nanoscale, 2017, 9, 5273-5279.

    10. [10] D. Xia, L. Hu, C. He, W. Pan, T. Yang, Y. Yang, S. Dong, Chem. Eng. J., 2015, 279, 929-938.

    11. [11] Z. Ai, W. Ho, S. Lee, L. Zhang, Environ. Sci. Technol., 2009, 43, 4143-4150.

    12. [12] G. Dong, W. Ho, L. Zhang, Appl. Catal B, 2015, 168-169, 490-496.

    13. [13] M. Ou, D. Fan, Z. Wei, Z. Wu, Chem. Eng. J., 2014, 255, 650-658.

    14. [14] W. J. Kim, D. Pradhan, B. K. Min, Y. Sohn, Appl. Catal. B, 2014, 147, 711-725.

    15. [15] L. Hong, S. Yun, C. Zhen, Z. Jin, W. Yong, J. Hazard. Mater., 2014, 266, 75-83.

    16. [16] H. Huang, X. Han, X. Li, S. Wang, P. K. Chu, Y. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 482-492.

    17. [17] F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Hazard. Mater., 2012, 219-220, 26-34.

    18. [18] L. Sun, L. Xiang, X. Zhao, C.J. Jia, J. Yang, Z. Jin, X. Cheng, W. Fan, ACS Catal., 2015, 5, 3540-3551.

    19. [19] Y. Wang, Y. Long, Z. Yang, D. Zhang, J. Hazard. Mater., 2018, 351, 11-19.

    20. [20] R. Chen, K. Li, X. S. Zhu, S. L. Xie, L. Z. Dong, S. L. Li, Y. Q. Lan, CrystEngComm, 2016, 18, 1446-1452.

    21. [21] K. Li, R. Chen, S. L. Li, S. L. Xie, L. Z. Dong, Z. H. Kang, J. C. Bao, Y. Q. Lan, Z. H. Kang, ACS Appl. Mater. Interfaces, 2016, 823, 14535-14541.

    22. [22] D. Shu, H. Wang, Y. Wang, Y. Li, X. Liu, X. Chen, X. Peng, X. Wang, P. Ruterana, H. Wang, Int. J. Hydrogen Energy, 2017, 42, 20888-20894.

    23. [23] Y. Bai, X. Shi, P.Q. Wang, H. Xie, L. Ye, ACS Appl. Mater. Interfaces, 2017, 9, 30273-30277.

    24. [24] Y. Bai, X. Shi, P. Wang, W. Li, H. Xie, Z. Li, L. Qu, L. Ye, J. Taiwan Inst. Chem. E., 2018, 91, 358-328.

    25. [25] L. Ye, W. Hui, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X. Liu, Sol. Energy Mat. Sol. C., 2016, 144, 732-739.

    26. [26] Y. Bai, X. Shi, P. Wang, L. Wang, K. Zhang, Y. Zhou, H. Xie, J. Wang, L. Ye, Chem. Eng. J., 2019, 356, 34-42.

    27. [27] Y. Lei, G. Wang, P. Guo, H. Song, Appl. Surf. Sci., 2013, 279, 374-379.

    28. [28] J. Cao, B. Xu, B. Luo, H. Lin, S. Chen, Catal. Commun., 2011, 13, 63-68.

    29. [29] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chem. Eng. J., 2012, 185-186, 91-99.

    30. [30] S. Gao, C. Guo, S. Hou, L. Wan, Q. Wang, J. Lv, Y. Zhang, J. Gao, W. Meng, J. Xu, J. Hazard. Mater., 2017, 331, 1-12.

    31. [31] J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale, 2016, 8, 2249-2259.

    32. [32] K. Zhang, C. Liu, F. Huang, C. Zheng, W. Wang, Appl. Catal. B, 2006, 68, 125-129.

    33. [33] Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai, P. K. Wong, Appl. Catal. B, 2016, 194, 98-104.

    34. [34] G. Jiang, X. Li, M. Lan, T. Shen, X. Lv, D. Fan, S. Zhang, Appl. Catal. B, 2017, 205, 532-540.

    35. [35] M. Shang, W. Wang, L. Zhang, J. Hazard. Mater., 2009, 167, 803-809.

    36. [36] L. Ye, J. Liu, J. Zhuo, T. Peng, L. Zan, Appl. Catal. B, 2013, 142-143, 1-7.

    37. [37] H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun, X. Fu, Environ. Sci. Technol., 2009, 43, 4164-4168.

    38. [38] Q. Wang, Z. Liu, D. Liu, G. Liu, Y. Min, F. Cui, W. Wei, Appl. Catal. B, 2018, 236, 222-232.

    39. [39] J. Wu, X. Chen, C. Li, Y. Qi, X. Qi, J. Ren, B. Yuan, N. Bu, R. Zhou, J. Zhang, T. Huang, Chem. Eng. J., 2016, 304, 533-543.

    40. [40] A. Mitsionis, T. Vaimakis, C. Trapalis, N. Todorova, D. Bahnemann, R. Dillert, Appl. Catal. B, 2011, 106, 398-404.

    41. [41] F. Dong, T. Xiong, S. Yan, H. Wang, Y. Sun, Y. Zhang, H. Huang, Z. Wu, J. Catal., 2016, 344, 401-410.

    42. [42] Y. Sun, W. Zhang, T. Xiong, Z. Zhao, F. Dong, R. Wang, W. K. Ho, J. Colloid. Interfaces Sci., 2014, 418, 317-323.

    43. [43] H. Wang, Y. Sun, G. Jiang, Y. Zhang, H. Huang, Z. Wu, S. C. Lee, F. Dong, Environ. Sci. Technol., 2018, 52, 1479-1487.

    44. [44] X. Zhang, L. Zhang, J. Phys. Chem. C, 2010, 114, 18198-18206.

    45. [45] X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, L. Ye, Appl. Catal. B, 2019, 243, 322-329.

    46. [46] J. C. Ahern, R. Fairchild, S. J. Thomas, J. Carr, H. H. Patterson, Appl. Catal. B, 2015, 179, 229-238.

    47. [47] M. A. Gondal, X. F. Chang, M. A. Ali, Z. H. Yamani, Q. Zhou, G. B. Ji, Appl. Catal. A, 2011, 397, 192-200.

    48. [48] G. Zhang, G. Li, Z. Lan, L. Lin, A. Savateev, T. Heil, S. Zafeiratos, X. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2017, 43, 13445-13449.

    49. [49] J. Park, D. Feng, S. Yuan, H. Zhou, Angew. Chem. Int. Ed., 2015, 54, 430-435.

    50. [50] H. Li, J. Li, Z. Ai, F. Jia, L. Zhang, Angew. Chem. Int. Ed., 2017, 57, 122-138.

    51. [51] Y. Su, C. Ding, Y. Dang, H. Wang, L. Ye, X. Jin, H. Xie, C. Liu, Appl. Surf. Sci., 2015, 346, 311-316.

    52. [52] H. Wang, S. Chen, D. Yong, X. Zhang, S. Li, W. Shao, X. Sun, B. Pan, Y. Xie, J. Am. Chem. Soc., 2017, 139, 4737-4742.

    53. [53] X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, J. Wang, Z. Li, L. Qu, M. Shi, L. Ye, ACS Sustain. Chem. Eng., 2018, 6, 13739-13746.

    54. [54] G. Dong, W. Ho, Y. Li, L. Zhang, Appl. Catal. B, 2015, 174-175, 477-485.

    55. [55] K. I. Hadjiivanov, Catal. Rev.-Sci. Eng., 2000, 42, 71-144.

    56. [56] W. Cui, L. Chen, J. Li, Y. Zhou, Y. Sun, G. Jiang, S. C. Lee, F. Dong, Appl. Catal. B, 2019, 253, 293-299.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  492
  • HTML全文浏览量:  14
文章相关
  • 收稿日期:  2020-02-26
  • 修回日期:  2020-03-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章