Citation: Tao Zhang. ZnO-ZrO2 solid solution catalyst for highly selective hydrogenation of CO2 to methanol[J]. Chinese Journal of Catalysis, 2017, 38(11): 1781-1783. doi: 10.1016/S1872-2067(17)62966-8
ZnO-ZrO2固溶体催化剂上CO2高选择性加氢制甲醇
使用煤或天然气经合成气用CuZnOAl2O3催化剂合成甲醇已工业化50年左右,甲醇选择性可达99%,但该催化剂应用于CO2加氢制甲醇时,较强的逆水煤气变换副反应致使甲醇选择性只有60%左右,另外,反应生成的水会加速Cu基催化剂的失活.因此,开发新型高选择性催化体系显得尤为必要,世界上很多科学家展开了新型催化剂的研发,如Cu/ZnO/ZrO2,Pd/ZnO, "georgeite" Cu,Cu (Au)/CeOx/TiO2,Ni-Ga,MnOx/Co3O4催化剂等,但这几类催化剂体系上甲醇选择性都不超过60%,CO2加氢制甲醇选择性低的问题一直没有解决.
近期,中国科学院大连化学物理研究所李灿院士课题组开发了一种不同于传统金属催化剂的双金属固溶体氧化物催化剂ZnO-ZrO2,在近似工业条件下(5.0 MPa,24000 mL/(g h),H2/CO2=3/1~4/1,320~315 ℃),当CO2单程转化率超过10%时,甲醇选择性仍保持在90%左右,是目前同类研究中综合水平最好的结果.研究表明,该催化剂的固溶体结构特征提供了双活性中心反应位点,Zn和Zr,其中H2和CO2分别在Zn位和原子相邻的Zr位上活化,在CO2加氢过程中表现出了协同作用,从而可高选择性地生成甲醇.原位红外-质谱同位素实验及DFT理论计算结果表明,表面HCOO*和H3CO*是反应主要的活性中间物种.该催化剂反应连续运行500 h无失活现象,还具有极好的耐烧结稳定性和一定的抗硫能力,表现出了良好的工业应用前景.传统甲醇合成Cu基催化剂要求原料气含硫低于0.5 ppm,而该催化剂的抗硫能力无疑可使原料气净化成本大大降低,在工业应用方面表现出潜在的优势.
English
ZnO-ZrO2 solid solution catalyst for highly selective hydrogenation of CO2 to methanol
-
-
[1] G. A. Olah, A. Goeppert, G. K. Surya Prakash, Beyond Oil and Gas:The Methanol Economy, Wiley-VCH, Weinheim, Germany, 2011.
-
[2] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev., 2011, 40, 3703-3727.
-
[3] H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev, J. Catal., 2016, 343, 133-146.
-
[4] S. A. Kondrat, P. J. Smith, P. P. Wells, P. A. Chater, J. H. Carter, D. J. Morgan, E. M. Fiordaliso, J. B. Wagner, T. E. Davies, L. Lu, J. K. Bart-ley, S. H. Taylor, M. S. Spencer, C. J. Kiely, G. J. Kelly, C. W. Park, M. J. Rosseinsky, G. J. Hutchings, Nature, 2016, 531, 83-87.
-
[5] J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Se-nanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, Science, 2014, 345, 546-550.
-
[6] X. Yang, X. Yang, S. Kattel, S. D. Senanayake, J. A. Boscoboinik, X. Nie, J. Graciani, J. A. Rodriguez, P. Liu, D. J. Stacchiola, J. G. Chen, J. Am. Chem. Soc., 2015, 137, 10104-10107.
-
[7] F. Studt, I. Sharafutdinov, F. A. Pedersen, C. F. Elkjar, J. S. Hum-melshoj, S. Dahl, I. Chorkendorff, Nat. Chem., 2014, 6, 320-324.
-
[8] C. Li, G. Melaet, W. T. Ralston, K. An, C. Brooks, Y. Ye, Y. Liu, J. Zhu, J. Guo, S. Alayoglu, G. A. Somorjai, Nat. Commun., 2016, 6:6538.
-
[9] J. J. Wang, G. N. Li, Z. L. Li, C. Z. Tang, Z. C. Feng, H. Y. An, T. F. Liu, H. L. Liu, C. Li, Sci. Adv., 2017, 3, DOI: 10.1126/sciadv.1701290.
-
[10] K. Larmier, W. C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. C. Vives, C. Coperet, Angew. Chem. Int. Ed., 2017, 56, 2318-2323.
-
[11] S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, J. Am. Chem. Soc., 2016, 138, 12440-12450.
-
-
扫一扫看文章
计量
- PDF下载量: 7
- 文章访问数: 1179
- HTML全文浏览量: 154

下载: