三维有序介孔二氧化锰制备及其甲醛催化氧化性能

拜冰阳 乔琦 李俊华 郝吉明

引用本文: 拜冰阳, 乔琦, 李俊华, 郝吉明. 三维有序介孔二氧化锰制备及其甲醛催化氧化性能[J]. 催化学报, 2016, 37(1): 27-31. doi: 10.1016/S1872-2067(15)61026-9 shu
Citation:  Bingyang Bai, Qi Qiao, Junhua Li, Jiming Hao. Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation[J]. Chinese Journal of Catalysis, 2016, 37(1): 27-31. doi: 10.1016/S1872-2067(15)61026-9 shu

三维有序介孔二氧化锰制备及其甲醛催化氧化性能

    通讯作者: 李俊华, 乔琦; 李俊华, 乔琦
  • 基金项目:

    国家自然科学基金(21325731, 21221004, 51478241). (21325731, 21221004, 51478241)

摘要: 空气中的甲醛主要来源于化工、建材、涂料、装潢材料以及机动车尾气.甲醛具有光化学活性,对人体具有致癌致畸作用.高浓度甲醛对人体健康和空气环境危害极大,室内低浓度甲醛对人体也有很大伤害.因此,消除室内、机动车尾气以及工业生产过程中的甲醛非常必要.目前,去除甲醛的方法主要有吸附法、光催化法和催化燃烧法.其中,催化燃烧法具有去除效率高、起燃温度低、适用范围广、设备操作简单以及无二次污染等优点,因而非常适用于去除高浓度和低浓度甲醛.该方法的核心是催化剂的制备和筛选.近年来,用于甲醛催化燃烧的催化剂主要是负载型贵金属和金属氧化物.由于贵金属催化剂成本较高,所以金属氧化物催化剂备受关注.MnO2种类繁多,既包括人工合成的棒状、线状、管状、球状和孔状等形貌,还包括自然界存在的α,β,γ和δ等类型.其中,介孔MnO2因具有较大的比表面积和特殊的孔道而应用于乙醇、甲苯、苯等挥发性有机物的催化氧化反应.目前,尚未见三维(3D)有序介孔MnO2催化氧化甲醛的报道.
本文以合成的3D有序介孔KIT-6分子筛为硬模板剂,采用纳米浇筑法制备出3D有序介孔MnO2材料.为了比较,采用水热法合成了α-MnO2和β-MnO2纳米棒.采用X射线粉末衍射、N2吸附-脱附、透射电子显微镜和X射线能谱(XPS)等方法对催化剂进行了表征.在微型固定床石英管反应器上评价了催化剂催化甲醛氧化活性,采用气相色谱(GC)联接热导检测器(TCD)和质谱检测器(MSD)检测产物和反应物的含量.
表征结果表明,3D-MnO2复制了KIT-6硬模板的三维有序立方对称介孔结构(ia3d),且具有金红石型β-MnO2晶相,属软锰矿,具有较大的比表面积和双孔分布介孔结构,最大孔径分别位于3.7和11.4nm处.3D-MnO2样品具有清晰的孔道结构,而α-MnO2和β-MnO2纳米棒为无孔的一维纳米单晶材料.另外,3D-MnO2表面暴露了较多的(110)晶面,有利于增加表面Mn4+离子.XPS结果证实3D-MnO2表面存在较多的Mn4+离子,这些Mn4+离子为甲醛催化反应提供了丰富的活性位,有利于提高甲醛氧化活性.评价结果表明,3D-MnO2具有良好的低温催化性能,于130℃即可将甲醛完全转化成CO2和H2O;而在同样条件下,α-MnO2纳米棒和β-MnO2纳米棒分别在140和180℃才能完全转化甲醛.3D-MnO2具有良好的甲醛催化性能主要归因于特殊的介孔结构、较大的比表面积和较多的表面Mn4+离子.

English

    1. [1] R. T. Huang, Y. Y. Liu, Z. W. Chen, D. Y. Pan, Z. Li, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, ACS Appl. Mater. Interfaces, 2015, 7, 3949.[1] R. T. Huang, Y. Y. Liu, Z. W. Chen, D. Y. Pan, Z. Li, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, ACS Appl. Mater. Interfaces, 2015, 7, 3949.

    2. [2] Z. W. Chen, Z. Jiao, D. Y. Pan, Z. Li, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, Chem. Rev., 2012, 112, 3833.[2] Z. W. Chen, Z. Jiao, D. Y. Pan, Z. Li, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, Chem. Rev., 2012, 112, 3833.

    3. [3] Y. Y. Liu, Z. W. Chen, C. H. Shek, C. M. L. Wu, J. K. L. Lai, ACS Appl. Mater. Interfaces, 2014, 6, 9776.[3] Y. Y. Liu, Z. W. Chen, C. H. Shek, C. M. L. Wu, J. K. L. Lai, ACS Appl. Mater. Interfaces, 2014, 6, 9776.

    4. [4] C. Chen, G. J. Ding, D. Zhang, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, Z. W. Chen, Nanoscale, 2012, 4, 2590.[4] C. Chen, G. J. Ding, D. Zhang, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, Z. W. Chen, Nanoscale, 2012, 4, 2590.

    5. [5] Z. W. Chen, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, Prog. Mater. Sci., 2011, 56, 901.[5] Z. W. Chen, Z. Jiao, M. H. Wu, C. H. Shek, C. M. L. Wu, J. K. L. Lai, Prog. Mater. Sci., 2011, 56, 901.

    6. [6] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.[6] B. Y. Bai, J. H. Li, J. M. Hao, Appl. Catal. B, 2015, 164, 241.

    7. [7] Q. Ye, J. S. Zhao, F. F. Huo, D. Wang, S. Y. Cheng, T. F. Kang, H. X. Dai, Microporous Mesoporous Mater., 2013, 172, 20.[7] Q. Ye, J. S. Zhao, F. F. Huo, D. Wang, S. Y. Cheng, T. F. Kang, H. X. Dai, Microporous Mesoporous Mater., 2013, 172, 20.

    8. [8] J. G. Deng, L. Zhang, H. X. Dai, Y. S. Xia, H. Y. Jiang, H. Zhang, H. He, J. Phys. Chem. C, 2010, 114, 2694.[8] J. G. Deng, L. Zhang, H. X. Dai, Y. S. Xia, H. Y. Jiang, H. Zhang, H. He, J. Phys. Chem. C, 2010, 114, 2694.

    9. [9] F. Jiao, P. G. Bruce, Adv. Mater., 2007, 19, 657.[9] F. Jiao, P. G. Bruce, Adv. Mater., 2007, 19, 657.

    10. [10] X. F. Tang, X. M. Huang, J. J. Shao, J. L. Liu, Y. G. Li, Y. D. Xu, W. J. Shen, Chin. J. Catal., 2006, 27, 97.[10] X. F. Tang, X. M. Huang, J. J. Shao, J. L. Liu, Y. G. Li, Y. D. Xu, W. J. Shen, Chin. J. Catal., 2006, 27, 97.

    11. [11] B. Y. Bai, J. H. Li, ACS Catal., 2014, 4, 2753.[11] B. Y. Bai, J. H. Li, ACS Catal., 2014, 4, 2753.

    12. [12] X. F. Tang, J. L. Chen, X. M. Huang, Y. D. Xu, W. J. Shen, Appl. Catal. B, 2008, 81, 115.[12] X. F. Tang, J. L. Chen, X. M. Huang, Y. D. Xu, W. J. Shen, Appl. Catal. B, 2008, 81, 115.

    13. [13] B. Y. Bai, H. Arandiyan, J. H. Li, Appl. Catal. B, 2013, 142-143, 677.[13] B. Y. Bai, H. Arandiyan, J. H. Li, Appl. Catal. B, 2013, 142-143, 677.

    14. [14] X. Wang, Y. D. Li, J. Am. Chem. Soc., 2002, 124, 2880.[14] X. Wang, Y. D. Li, J. Am. Chem. Soc., 2002, 124, 2880.

    15. [15] C. Wang, L. Sun, Q. Q. Cao, B. Q. Hu, Z. W. Huang, X. F. Tang, Appl. Catal. B, 2011, 101, 598.[15] C. Wang, L. Sun, Q. Q. Cao, B. Q. Hu, Z. W. Huang, X. F. Tang, Appl. Catal. B, 2011, 101, 598.

    16. [16] A. E. Espinal, L. C. Zhang, C. H. Chen, A. Morey, Y. F. Nie, L. Espinal, B. O. Wells, R. Joesten, M. Aindow, S. L. Suib, Nat. Mater., 2010, 9, 54.[16] A. E. Espinal, L. C. Zhang, C. H. Chen, A. Morey, Y. F. Nie, L. Espinal, B. O. Wells, R. Joesten, M. Aindow, S. L. Suib, Nat. Mater., 2010, 9, 54.

    17. [17] L. Ma, D. S. Wang, J. H. Li, B. Y. Bai, L. X. Fu, Y. D. Li, Appl. Catal. B, 2014, 148-149, 36.[17] L. Ma, D. S. Wang, J. H. Li, B. Y. Bai, L. X. Fu, Y. D. Li, Appl. Catal. B, 2014, 148-149, 36.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  839
  • HTML全文浏览量:  124
文章相关
  • 收稿日期:  2015-05-28
  • 网络出版日期:  2015-07-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章