Ni/C催化剂上山梨醇氢解反应中碱对乳酸形成的影响

张俊杰 路芳 于维强 卢锐 徐杰

引用本文: 张俊杰, 路芳, 于维强, 卢锐, 徐杰. Ni/C催化剂上山梨醇氢解反应中碱对乳酸形成的影响[J]. 催化学报, 2016, 37(1): 177-183. doi: 10.1016/S1872-2067(15)60976-7 shu
Citation:  Junjie Zhang, Fang Lu, Weiqiang Yu, Rui Lu, Jie Xu. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst[J]. Chinese Journal of Catalysis, 2016, 37(1): 177-183. doi: 10.1016/S1872-2067(15)60976-7 shu

Ni/C催化剂上山梨醇氢解反应中碱对乳酸形成的影响

    通讯作者: 徐杰, 路芳; 徐杰, 路芳
  • 基金项目:

    国家自然科学基金(21203183, 21233008, 21473188). (21203183, 21233008, 21473188)

摘要: 山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)2,CaO和Ba(OH)2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.
本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.
结果表明,以NaOH和Ca(OH)2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)2和La(OH)3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)2和La(OH)3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)2用量增加而增加;当OH-投料量为11.06mmol时,乳酸选择性可达11.7%.而以La(OH)3为添加剂时,即使La(OH)3用量仅为0.08mmol时,山梨醇转化率也可高达99%;继续增加La(OH)3用量,对乳酸的选择性影响不大;当OH-投料量为11.06mmol时,乳酸选择性也只有0.3%.
对山梨醇加氢裂解反应分析可知,与Ca(OH)2相比,La(OH)3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%. 上述结果表明La(OH)3可高效促进山梨醇加氢转化.为了探索Ca(OH)2或La(OH)3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化剂催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)2为添加剂时,乳酸选择性是以La(OH)3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)2为添加剂时,加氢反应和重排反应均可发生.而以La(OH)3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.

English

    1. [1] A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem. Int. Ed., 2012, 51, 2564.[1] A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem. Int. Ed., 2012, 51, 2564.

    2. [2] W. P. Deng, M. Liu, X. S. Tan, Q. H .Zhang, Y. Wang, J. Catal., 2010, 271, 22.[2] W. P. Deng, M. Liu, X. S. Tan, Q. H .Zhang, Y. Wang, J. Catal., 2010, 271, 22.

    3. [3] S. Saravanamurugan, A. Riisager, ChemCatChem, 2013, 5, 1754.[3] S. Saravanamurugan, A. Riisager, ChemCatChem, 2013, 5, 1754.

    4. [4] D. K. Sohounloue, C. Montassier, J. Barbier, React. Kinet. Catal. Lett., 1983, 22, 391.[4] D. K. Sohounloue, C. Montassier, J. Barbier, React. Kinet. Catal. Lett., 1983, 22, 391.

    5. [5] M. Banu, P. Venuvanalingam, R. Shanmugam, B. Viswanathan, S. Sivasanker, Top. Catal., 2012, 55, 897.[5] M. Banu, P. Venuvanalingam, R. Shanmugam, B. Viswanathan, S. Sivasanker, Top. Catal., 2012, 55, 897.

    6. [6] I. M. Leo, M. L. Granados, J. L. G. Fierro, R. Mariscal, Chin. J. Catal., 2014, 35, 614.[6] I. M. Leo, M. L. Granados, J. L. G. Fierro, R. Mariscal, Chin. J. Catal., 2014, 35, 614.

    7. [7] L. M. Ye, X. P. Duan, H. Q. Lin, Y. Z. Yuan, Catal. Today, 2012, 183, 65.[7] L. M. Ye, X. P. Duan, H. Q. Lin, Y. Z. Yuan, Catal. Today, 2012, 183, 65.

    8. [8] X. G. Chen, X. C. Wang, S. X. Yao, X. D. Mu, Catal. Commun., 2013, 39, 86.[8] X. G. Chen, X. C. Wang, S. X. Yao, X. D. Mu, Catal. Commun., 2013, 39, 86.

    9. [9] L. Zhao, J. H. Zhou, Z. J. Sui, X. G. Zhou, Chem. Eng. Sci., 2010, 65, 30.[9] L. Zhao, J. H. Zhou, Z. J. Sui, X. G. Zhou, Chem. Eng. Sci., 2010, 65, 30.

    10. [10] K. Y. Wang, M. C. Hawley, T. D. Furney, Ind. Eng. Chem. Res., 1995, 34, 3766.[10] K. Y. Wang, M. C. Hawley, T. D. Furney, Ind. Eng. Chem. Res., 1995, 34, 3766.

    11. [11] J. Y. Sun, H. C. Liu, Green Chem., 2011, 13, 135.[11] J. Y. Sun, H. C. Liu, Green Chem., 2011, 13, 135.

    12. [12] I. Clark, Ind. Eng. Chem., 1958, 50, 1125.[12] I. Clark, Ind. Eng. Chem., 1958, 50, 1125.

    13. [13] J. Y. Sun, H. C. Liu, Catal. Today, 2014, 234, 75.[13] J. Y. Sun, H. C. Liu, Catal. Today, 2014, 234, 75.

    14. [14] M. Banu, S. Sivasanker, T. M. Sankaranarayanan, P. Venuvanalingam, Catal. Commun., 2011, 12, 673.[14] M. Banu, S. Sivasanker, T. M. Sankaranarayanan, P. Venuvanalingam, Catal. Commun., 2011, 12, 673.

    15. [15] T. A. Werpy, J. G. Frye, A. H. Zacher, D. J. Miller, US Patent 0 130 545. 2003.[15] T. A. Werpy, J. G. Frye, A. H. Zacher, D. J. Miller, US Patent 0 130 545. 2003.

    16. [16] F. Auneau, M. Berchu, G. Aubert, C. Pinel, M. Besson, D. Todaro, M. Bernardi, T. Ponsetti, R. Di Felice, Catal. Today, 2014, 234, 100.[16] F. Auneau, M. Berchu, G. Aubert, C. Pinel, M. Besson, D. Todaro, M. Bernardi, T. Ponsetti, R. Di Felice, Catal. Today, 2014, 234, 100.

    17. [17] J. H. Zhou, M. G Zhang, L. Zhao, P. Li, X. G. Zhou, W. K. Yuan, Catal. Today, 2009, 147, S225.[17] J. H. Zhou, M. G Zhang, L. Zhao, P. Li, X. G. Zhou, W. K. Yuan, Catal. Today, 2009, 147, S225.

    18. [18] L. Zhao, J. H. Zhou, H. Chen, M. G. Zhang, Z. J. Sui, X. G. Zhou, Korean J. Chem. Eng., 2010, 27, 1412.[18] L. Zhao, J. H. Zhou, H. Chen, M. G. Zhang, Z. J. Sui, X. G. Zhou, Korean J. Chem. Eng., 2010, 27, 1412.

    19. [19] J. H. Zhou, G. C. Liu, Z. J. Sui, X. G. Zhou, W. K. Yuan, Chin. J. Catal., 2014, 35, 692.[19] J. H. Zhou, G. C. Liu, Z. J. Sui, X. G. Zhou, W. K. Yuan, Chin. J. Catal., 2014, 35, 692.

    20. [20] T. Soták, T. Schmidt, M. Hronec, Appl. Catal. A, 2013, 459, 26.[20] T. Soták, T. Schmidt, M. Hronec, Appl. Catal. A, 2013, 459, 26.

    21. [21] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G .Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377.[21] Z. W. Huang, J. Chen, Y. Q. Jia, H. L. Liu, C. G .Xia, H. C. Liu, Appl. Catal. B, 2014, 147, 377.

    22. [22] J. J. Zhang, F. Lu, W. Q. Yu, J. Z. Chen, S. Chen, J. Gao, J. Xu, Catal. Today, 2014, 234, 107.[22] J. J. Zhang, F. Lu, W. Q. Yu, J. Z. Chen, S. Chen, J. Gao, J. Xu, Catal. Today, 2014, 234, 107.

    23. [23] W. Q. Yu, F. Lu, Y. L. Yang, J. J. Zhang, J. Gao, F. Wang, J. Xu, Energy Environ. Focus, 2012, 1, 99.[23] W. Q. Yu, F. Lu, Y. L. Yang, J. J. Zhang, J. Gao, F. Wang, J. Xu, Energy Environ. Focus, 2012, 1, 99.

    24. [24] B. P. Gangwar, V. Palakollu, A. Singh, S. Kanvah, S. Sharma, RSC Adv., 2014, 4, 55407.[24] B. P. Gangwar, V. Palakollu, A. Singh, S. Kanvah, S. Sharma, RSC Adv., 2014, 4, 55407.

    25. [25] R. Y. Sun, T. T. Wang, M. Y. Zheng, W. Q. Deng, J. F. Pang, A. Q. Wang, X. D. Wang, T. Zhang, ACS Catal., 2015, 5, 874.[25] R. Y. Sun, T. T. Wang, M. Y. Zheng, W. Q. Deng, J. F. Pang, A. Q. Wang, X. D. Wang, T. Zhang, ACS Catal., 2015, 5, 874.

    26. [26] Z. G. Zhang, J. E. Jackson, D. J. Miller, Ind. Eng. Chem. Res., 2002, 41, 691.[26] Z. G. Zhang, J. E. Jackson, D. J. Miller, Ind. Eng. Chem. Res., 2002, 41, 691.

    27. [27] Z. G. Zhang, J. E. Jackson, D. J. Miller, Appl. Catal. A, 2001, 219, 89.[27] Z. G. Zhang, J. E. Jackson, D. J. Miller, Appl. Catal. A, 2001, 219, 89.

    28. [28] E. P. Maris, R. J. Davis, J. Catal., 2007, 249, 328.[28] E. P. Maris, R. J. Davis, J. Catal., 2007, 249, 328.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1021
  • HTML全文浏览量:  186
文章相关
  • 收稿日期:  2015-08-28
  • 网络出版日期:  2015-09-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章