Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion
English
Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion
-
Key words:
- Graphene fibers
- / Assembly
- / Functionalization
- / Sensor
- / Energy storage and conversion
-
-
-
[1]
Donnet, J. B. in Carbon fibers. Marcel Dekker, Inc, 1998.
-
[2]
He, F. in Carbon fiber and graphite fiber. Chemical Industry Press, 2010.
-
[3]
Jeffries, R. Prospects for carbon fibres. Nature 1971, 232(5309), 304-307. doi: 10.1038/232304a0
-
[4]
Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R. Carbon fibers: precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 2014, 53(21), 5262-5298. doi: 10.1002/anie.v53.21
-
[5]
Standage, A. E.; Prescott, R. High elastic modulus carbon fibre. Nature 1966, 211(5045), 169-169.
-
[6]
Moreton, R.; Watt, W.; Johnson, W. Carbon fibres of high strength and high breaking strain. Nature 1967, 213(5077), 690-691. doi: 10.1038/213690a0
-
[7]
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354(6348), 56-58. doi: 10.1038/354056a0
-
[8]
Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature 2003, 423(6941), 703-703. doi: 10.1038/423703a
-
[9]
Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.; Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.; Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W. E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.; Smalley, R. E. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305(5689), 1447-1450. doi: 10.1126/science.1101398
-
[10]
Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290(5495), 1331-1334. doi: 10.1126/science.290.5495.1331
-
[11]
Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 2009, 4(12), 830-834. doi: 10.1038/nnano.2009.302
-
[12]
Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 2002, 419(6909), 801-801. doi: 10.1038/419801a
-
[13]
Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304(5668), 276-278. doi: 10.1126/science.1094982
-
[14]
Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306(5700), 1358-1361. doi: 10.1126/science.1104276
-
[15]
Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18(12), 1505-1510. doi: 10.1002/(ISSN)1521-4095
-
[16]
Weng, W. Z.; He, S. S.; Song, H. Y.; Li, X. Q.; Cao, L. H.; Hu, Y. J.; Cui, J.; Zhou, Q. R.; Peng, H. S.; Su, J. C. Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior. ACS Nano 2018, 12(8), 7601−7612. doi: 10.1021/acsnano.7b07439
-
[17]
He, S. S.; Zhang, Y. Y.; Qiu, L. B.; Zhang, L. S.; Xie, Y.; Pan, J.; Chen, P. N.; Wang, B. J.; Xu, X. J.; Hu, Y. J.; Dinh, C. T.; De Luna, P.; Banis, M. N.; Wang, Z. Q.; Sham, T. K.; Gong, X. G.; Zhang, B.; Peng, H. S.; Sargent, E. H. Chemical-to-electricity carbon: water device. Adv. Mater. 2018, 30(18), 1707635. doi: 10.1002/adma.201707635
-
[18]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306(5696), 666-669. doi: 10.1126/science.1102896
-
[19]
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8(3), 902-907. doi: 10.1021/nl0731872
-
[20]
Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321(5887), 385-388. doi: 10.1126/science.1157996
-
[21]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless dirac fermions in graphene. Nature 2005, 438(7065), 197-200. doi: 10.1038/nature04233
-
[22]
Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438(7065), 201-204. doi: 10.1038/nature04235
-
[23]
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146(9-10), 351-355. doi: 10.1016/j.ssc.2008.02.024
-
[24]
Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100(1), 016602. doi: 10.1103/PhysRevLett.100.016602
-
[25]
Chen, H. J.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3(4), 206-209. doi: 10.1038/nnano.2008.58
-
[26]
Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80(6), 1339-1339. doi: 10.1021/ja01539a017
-
[27]
Brodie, B. C. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249-259. doi: 10.1098/rstl.1859.0013
-
[28]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31(2), 1481-1487. doi: 10.1002/(ISSN)1099-0682
-
[29]
Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8(6), 1679-1682. doi: 10.1021/nl080604h
-
[30]
Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48(15), 4466-4474. doi: 10.1016/j.carbon.2010.08.006
-
[31]
Moon, K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73-78.
-
[32]
Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2(3), 463-470. doi: 10.1021/nn700375n
-
[33]
McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater. 2007, 19(18), 4396-4404. doi: 10.1021/cm0630800
-
[34]
Zhu, Y. W.; Stoller, M. D.; Cai, W. W.; Velamakanni, A.; Piner, R. D.; Chen, D.; Ruoff, R. S. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 2010, 4(2), 1227-1233. doi: 10.1021/nn901689k
-
[35]
Wang, Z. J.; Zhou, X. Z.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem, C 2009, 113(32), 14071-14075. doi: 10.1021/jp906348x
-
[36]
Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. H. A green approach to the dynthesis of graphene nanosheets. ACS Nano 2009, 3(9), 2653-2659. doi: 10.1021/nn900227d
-
[37]
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2006, 6(3), 183-191.
-
[38]
Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Ren, X.; Jin, C.; Xu, P.; Wang, M.; Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28(30), 6449-6456. doi: 10.1002/adma.201506426
-
[39]
Liu, Y. J.; Liang, H.; Xu, Z.; Xi, J. B.; Chen, G. F.; Gao, W. W.; Xue, M. Q.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11(4), 4301−4306. doi: 10.1021/acsnano.7b01491
-
[40]
Lim, L.; Liu, Y. S.; Liu, W. W.; Tjandra, R.; Rasenthiram, L.; Chen, Z. W.; Yu, A. P. All-in-one graphene based composite fiber: toward wearable supercapacitor. ACS Appl. Mater. Interfaces 2017, 9(45), 39576-39583. doi: 10.1021/acsami.7b10182
-
[41]
Meng, J.; Nie, W. Q.; Zhang, K.; Xu, F. J.; Ding, X.; Wang, S. R.; Qiu, Y. P. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10(16), 13652−13659. doi: 10.1021/acsami.8b04438
-
[42]
Choi, S. J.; Yu, H. Y.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 2018, 14(13), 1703934. doi: 10.1002/smll.v14.13
-
[43]
Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583
-
[44]
Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6(8), 7103-7113. doi: 10.1021/nn3021772
-
[45]
Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 2011, 10(11), 817−822. doi: 10.1038/nmat3115
-
[46]
Li, M. C.; Zhang, X. H.; Wang, X.; Ru, Y.; Qiao, J. L. Ultrastrong graphene-based fibers with increased elongation. Nano Lett. 2016, 16(10), 6511-6515. doi: 10.1021/acs.nanolett.6b03108
-
[47]
Zhao, Y.; Jiang, C. C.; Hu, C. G.; Dong, Z. L.; Xue, J. L.; Meng, Y. N.; Zheng, N.; Chen, P. W.; Qu, L. T. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 2013, 7(3), 2406-2412. doi: 10.1021/nn305674a
-
[48]
Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a onestep hydrothermal process. ACS Nano 2010, 4(7), 4324-4330. doi: 10.1021/nn101187z
-
[49]
Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24(14), 1856-1861. doi: 10.1002/adma.v24.14
-
[50]
Wu, G.; Tan, P. F.; Wu, X. J.; Peng, L.; Cheng, H. Y.; Wang, C. F.; Chen, W.; Yu, Z. Y.; Chen, S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv. Funct. Mater. 2017, 27(36), 1702493. doi: 10.1002/adfm.v27.36
-
[51]
Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.; Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12(11), 5879-5884. doi: 10.1021/nl303243h
-
[52]
Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A Bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30(15), 1706435. doi: 10.1002/adma.v30.15
-
[53]
Li, X. M.; Zhao, T. S.; Wang, K. L.; Yang, Y.; Wei, J. Q.; Kang, F. Y.; Wu, D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27(19), 12164-12171. doi: 10.1021/la202380g
-
[54]
Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395. doi: 10.1038/srep00395
-
[55]
Chen, T.; Dai, L. M. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes. Angew. Chem. Int. Ed. 2015, 54(49), 14947-14950. doi: 10.1002/anie.201507246
-
[56]
Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 2013, 3, 2065. doi: 10.1038/srep02065
-
[57]
Jang, E. Y.; Carretero-Gonzalez, J.; Choi, A.; Kim, W. J.; Kozlov, M. E.; Kim, T.; Kang, T. J.; Baek, S. J.; Kim, D. W.; Park, Y. W.; Baughman, R. H.; Kim, Y. H. Fibers of reduced graphene oxide nanoribbons. Nanotechnology 2012, 23(23), 235601. doi: 10.1088/0957-4484/23/23/235601
-
[58]
Zhao, F.; Zhao, Y.; Cheng, H. H.; Qu, L. T. A Graphene fibriform responsor for sensing heat, humidity, and mechanical changes. Angew. Chem. Int. Ed. 2015, 54(49), 14951-14955. doi: 10.1002/anie.201508300
-
[59]
Ding, X. T.; Bai, J.; Xu, T.; Li, C. X.; Zhang, H. M.; Qu, L. T. A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochem. Commun. 2016, 72, 122-125. doi: 10.1016/j.elecom.2016.09.021
-
[60]
Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7(4), 1307−1338. doi: 10.1039/C3EE43182G
-
[61]
Chen, B.; Liu, E. Z.; Cao, T. T.; He, F.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy 2017, 3, 247−256.
-
[62]
Lee, J. G.; Kwon, Y. B.; Ju, J. Y.; Choi, S. H.; Kang, Y. K.; Yu, W. R.; Kim, D. W. Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithium-ion batteries. J. Appl. Electrochem. 2017, 47(8), 865−875. doi: 10.1007/s10800-017-1085-y
-
[63]
Wang, B.; Ryu, J. G.; Choi, S. H.; Song, G. J.; Hong, D. K.; Hwang, C. Y.; Chen, X.; Wang, B.; Li, W.; Song, H. K.; Park, S. J.; Ruoff, R. S. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano, 2018, 12(2), 1736−1746.
-
[64]
Hoshide, T.; Zheng, Y. C.; Hou, J. Y.; Wang, Z. Q.; Li, Q. W.; Zhao, Z. G.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett. 2017, 17(6), 3543−3549. doi: 10.1021/acs.nanolett.7b00623
-
[65]
Rao, J. Y.; Liu, N. S.; Zhang, Z.; Su, J.; Li, L. Y.; Xiong, L.; Gao, Y. H. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 2018, 51, 425−433. doi: 10.1016/j.nanoen.2018.06.067
-
[66]
Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5(9), 651-654. doi: 10.1038/nnano.2010.162
-
[67]
Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater, 2012, 22(21), 4501-4510. doi: 10.1002/adfm.v22.21
-
[68]
Chen, J.; Li, C.; Shi, G. Q. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4(8), 1244-1253. doi: 10.1021/jz400160k
-
[69]
Huang, L.; Li, C.; Shi, G. Q. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J. Mater. Chem. A 2014, 2(4), 968-974. doi: 10.1039/C3TA14511E
-
[70]
Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z. H.; Qu, L. T. All-in-one graphene fiber supercapacitors. Nanoscale 2014, 6(12), 6448-6451. doi: 10.1039/c4nr01220h
-
[71]
Zhao, Y.; Han, Q.; Cheng, Z. H.; Jiang, L.; Qu, L. T. Integratedgraphene systems by laser irradiation for advanced deviced. Nano Today 2017, 12, 14-30. doi: 10.1016/j.nantod.2016.12.010
-
[72]
Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.; Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3(6), 2547-2551. doi: 10.1039/C4TA06574C
-
[73]
Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao, C. Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 2017, 11(11), 11056−11065. doi: 10.1021/acsnano.7b05092
-
[74]
Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 2013, 52(40), 10482-10486. doi: 10.1002/anie.201304358
-
[75]
Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26(18), 2909-2913. doi: 10.1002/adma.v26.18
-
[76]
Conley, H.; Lavrik, N. V.; Prasai, D.; Bolotin, K. I. Graphene bimetallic-like cantilevers: probing graphene/substrate interactions. Nano Lett. 2011, 11(11), 4748-4752. doi: 10.1021/nl202562u
-
[77]
Wang, Y. H.; Bian, K.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Zhang, H. M.; Qu, L. T. Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. Electrochem. Commun. 2013, 35, 49-52. doi: 10.1016/j.elecom.2013.07.044
-
[78]
Xie, X. J.; Qu, L. T.; Zhou, C.; Li, Y.; Bai, H.; Shi, G. Q.; Dai, L. M. An Asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 2010, 4(10), 6050-6054. doi: 10.1021/nn101563x
-
[79]
Liang, J. J.; Huang, Y.; Oh, J. Y.; Kozlov, M.; Sui, D.; Fang, S. L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011, 21(19), 3778-3784. doi: 10.1002/adfm.201101072
-
[80]
Liu, J.; Wang, Z.; Xie, X. J.; Cheng, H. H.; Zhao, Y.; Qu, L. T. A rationally-designed synergetic polypyrrole/graphene bilayer actuator. J. Mater. Chem. 2012, 22(9), 4015-4020. doi: 10.1039/c2jm15266e
-
[81]
Huang, Y.; Liang, J. J.; Chen, Y. S. The application of graphene based materials for actuators. J. Mater. Chem. 2012, 22(9), 3671-3679. doi: 10.1039/c2jm15536b
-
[82]
Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote lightcontrolled liquid microvalves. Adv. Funct. Mater. 2012, 22(19), 4017-4022. doi: 10.1002/adfm.v22.19
-
[83]
Wu, C. Z.; Feng, J.; Peng, L. L.; Ni, Y.; Liang, H. Y.; He, L. H.; Xie, Y. Large-area graphene realizing ultrasensitive photothermal actuator with high transparency: new prototype robotic motions under infrared-light stimuli. J. Mater. Chem. 2011, 21(46), 18584-18591. doi: 10.1039/c1jm13311j
-
[84]
Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5(8), 3112-3126. doi: 10.1039/c3nr00011g
-
[85]
Lu, L. H.; Liu, J. H.; Hu, Y.; Zhang, Y. W.; Chen, W. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 2013, 25(9), 1270-1274. doi: 10.1002/adma.v25.9
-
[86]
Liang, J. J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y. P.; Fang, S. L.; Oh, J. Y.; Kozlov, M.; Ma, Y. F.; Li, F. F.; Baughman, R.; Chen, Y. S. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 2012, 6(5), 4508-4509. doi: 10.1021/nn3006812
-
[87]
Cheng, H. H.; Huang, Y. X.; Shi, G. Q.; Jiang, L.; Qu, L. T. Graphene-based functional architectures: sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 2017, 50(7), 1663−1671. doi: 10.1021/acs.accounts.7b00131
-
[88]
Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329-335. doi: 10.1016/j.nanoen.2016.12.062
-
[89]
Yang, Z. B.; Sun, H.; Chen, T.; Qiu, L. B.; Luo, Y. F.; Peng, H. S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency. Angew. Chem. Int. Ed. 2013, 52(29), 7545-7548.
-
[90]
Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4(1), 1600262. doi: 10.1002/advs.201600262
-
[91]
Xu, J.; Chen, Z. Y.; Zhang, H. W.; Lin, G. B.; Wang, X. X.; Long, J. L. Cd3(C3N3S3)2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H2O2 production under visible light. Sci. Bull. 2017, 62(9), 610-618. doi: 10.1016/j.scib.2017.04.013
-
[92]
Shang, L.; Bian, T.; Zhang, B. H.; Zhang, D. H.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 2014, 53, 250-254. doi: 10.1002/anie.v53.1
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1714
- HTML全文浏览量: 25

下载: