Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant
English
Superhydrophobic PVDF/TiO2-SiO2 Membrane with Hierarchical Roughness in Membrane Distillation for Water Recovery from Phenolic Rich Solution Containing Surfactant
-
Key words:
- Superhydrophobic
- / PVDF
- / Nanoparticles
- / Roughness
- / Membrane distillation
-
-
-
[1]
Cheynier, V. Phenolic compounds: from plants to foods. Phytochem Rev. 2012, 153(11), 153-177.
-
[2]
The Cocacola company, Improving Our Water Efficiency. http://www.coca-colacompany.com/stories/setting-a-new-goal-for-water-efficiency, 2017[Accessed 10 December 2017].
-
[3]
Rahim, R.; Raman, A. Cleaner production implementation in a fruit juice production plant. J. Clean Prod. 2015, 101, 215-221. doi: 10.1016/j.jclepro.2015.03.065
-
[4]
Sua'rez, L.; Dı'ez, M. A.; Garcı'a, R.; Riera, F. A. Membrane technology for the recovery of detergent compounds: A review. J. Ind. Eng. Chem. 2012, 18, 1859-1873. doi: 10.1016/j.jiec.2012.05.015
-
[5]
Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chem. 2016, 213, 753-762. doi: 10.1016/j.foodchem.2016.07.030
-
[6]
Akdemir, E. O.; Ozer, A. Investigation of two ultrafiltration membranes for treatment of olive oil mill wastewater. Desalination 2009, 249, 660-666. doi: 10.1016/j.desal.2008.06.035
-
[7]
Garcia-Castello, E.; Cassano, A.; Criscuoli, A.; Conidi, C.; Drioli, E. Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res. 2010, 44, 3883-3892. doi: 10.1016/j.watres.2010.05.005
-
[8]
Ioannou-Ttofa, L.; Michael-Kordatou, I.; Fattas, S. C.; Eusebio, A.; Ribeiro, B.; Rusan, M.; Amer, A. R. B.; Zuraiqi, S.; Waismand, M.; Linder, C.; Wiesman, Z.; Gilron, J.; Fatta-Kassinos, D. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. Water Res. 2017, 114, 1-13. doi: 10.1016/j.watres.2017.02.020
-
[9]
Destani, F.; Cassano, A.; Fazio, A.; Vincken, J. P.; Gabriele, B. Recovery and concentration of phenolic compounds in blood orange juice by membrane operations. J. Food Eng. 2013, 117, 63-271.
-
[10]
El-Abbassi, A.; Khayet, M.; Kiai, H.; Hafidi, A.; García-Payo, M. C. Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep. Purif. Technol. 2013, 327-332, 104.
-
[11]
Kiai, H.; García-Payo, M. C.; Hafidi, A.; Khayet, M. Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chem. Eng. Process. 2014, 86, 153-161. doi: 10.1016/j.cep.2014.09.007
-
[12]
Macedonio, F.; Drioli, E. Membrane Engineering for Green Process Engineering. Engineering 2017, 3(3), 290-298. doi: 10.1016/J.ENG.2017.03.026
-
[13]
Chang, Y. R.; Lee, Y. J.; Lee, D. J. Membrane fouling during water or wastewater treatments: Current research updated. Taiwan Inst. Chem. Eng. 2018, 1-9(https://doi.org/10.1016/j.jtice.2017.12.019). doi: 10.1016/j.jtice.2017.12.019
-
[14]
Tijing, L. D.; Woo, Y. C.; Choi, J. S.; Lee, S.; Kim, S. H.; Shon, H. K. Fouling and its control in membrane distillation ─A review. J. Membr. Sci. 2015, 475, 215-244. doi: 10.1016/j.memsci.2014.09.042
-
[15]
Li, Y.; Zhu, L. Preparation and characterization of novel poly (vinylidene fluoride) membranes using flower-like Bi 2 WO 6 for membrane distillation. J. Taiwan Inst. Chem. Eng. 2017, 80, 867-874. doi: 10.1016/j.jtice.2017.07.015
-
[16]
Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415-416, 850-863. doi: 10.1016/j.memsci.2012.06.004
-
[17]
Dong, Z. Q.; Ma, X.; Xu, Z. L.; You, W. T.; Li, F. Superhydrophobic PVDF-PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination 2014, 347, 175-183. doi: 10.1016/j.desal.2014.05.015
-
[18]
Meng, S.; Ye, Y.; Mansouri, J.; Chen, V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. J. Membr. Sci. 2014, 463, 102-112. doi: 10.1016/j.memsci.2014.03.027
-
[19]
Zhang, W.; Li, Y.; Liu, J.; Li, B.; Wang, S. Fabrication of hierarchical poly (vinylidene fluoride) micro/nano-composite membrane with anti-fouling property for membrane distillation. J. Membr. Sci. 2017, 535, 258-267. doi: 10.1016/j.memsci.2017.04.051
-
[20]
Huang, Y. X.; Wang, Z.; Hou, D.; Lin, S. Coaxially electrospun super-amphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J. Membr. Sci. 2017, 531, 122-128. doi: 10.1016/j.memsci.2017.02.044
-
[21]
Hou, D.; Ding, D. L. C.; Wang, D.; Wang, J. Fabrication and characterization of electrospun superhydrophobic PVDFHFP/SiNPs hybrid membrane for membrane distillation. Sep. Purif. Technol. 2017, 189, 82-89. doi: 10.1016/j.seppur.2017.07.082
-
[22]
Yan, K. K.; Jiao, J.; Lin, S.; Ji, X.; Lu, Y.; Zhang, L. Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalination 2018, 437, 26-33. doi: 10.1016/j.desal.2018.02.020
-
[23]
Hamzah, N.; Leo, C. P. Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: Separation, fouling and self-cleaning evaluation. Desalination 2017, 418, 79-88. doi: 10.1016/j.desal.2017.05.029
-
[24]
Wang, Z.; Lin, S. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability. Water Res. 2017, 112, 38-47. doi: 10.1016/j.watres.2017.01.022
-
[25]
Lu, J. K.; Zuo, J.; Chang, J.; Kuan, H. N.; Chung, T. S. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environ. Sci. Technol. 2018, 52, 4472-4480. doi: 10.1021/acs.est.8b00766
-
[26]
Chew, N. G. P.; Zhao, S.; Loh, C. H.; Permogorov, N.; Wang, R. Surfactant effects on water recovery from produced water via direct-contact membrane distillation. J. Membr. Sci. 2017, 528, 126-134. doi: 10.1016/j.memsci.2017.01.024
-
[27]
Chen, Y.; Tian, M.; Li, X.; Wang, Y.; An, A. K.; Fang, J.; He, T. Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters. J. Membr. Sci. 2017, 535, 230-238. doi: 10.1016/j.memsci.2017.04.040
-
[28]
Hamzah, N.; Leo, C. P. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles. Sep. Purif. Technol. 2016, 167, 79-87. doi: 10.1016/j.seppur.2016.05.005
-
[29]
Hamzah, N.; Leo, C. P. Microwave assisted extraction of trigona propolis: The effect of processing parameters. Inter. J. Food Eng. 2015, 11(6), 861-870.
-
[30]
Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50(7), 3798-3817. doi: 10.1021/ie101928r
-
[31]
Thomas, R.; Bilad, M. R.; Arafat, H. A. PVDF membranes for membrane distillation: Controlling pore structure, porosity, hydrophobicity, and mechanical strength. In Membrane fabrication. ed. by Hilal, N.; Iamail, A. F.; Wright, C. Boca Raton, FL: CRC Press, 2015, 268.
-
[32]
Bhattacharya, M. Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9(4), 262-296. doi: 10.3390/ma9040262
-
[33]
Hurst, S. M.; Farshchian, B.; Choi, J.; Kim, J.; Park, S. A universally applicable method forfabricatin gsuperhydrophobic polymer surfaces. Colloid Surface A 2012, 407, 85-90. doi: 10.1016/j.colsurfa.2012.05.012
-
[34]
Rezaei, M.; Samhaber, W. Wetting behaviour of superhydrophobic membranes coated with nanoparticles in membrane distillation. Chem. Engineer Trans. 2016, 47, 373-378.
-
[35]
Karunakaran, R. G.; Lu, C. H.; Zhang, Z.; Yang, S. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤ 100 nm). Langmuir 2011, 27(8), 4594-4602. doi: 10.1021/la104067c
-
[36]
Eykens, L.; Sitter, K. D.; Dotremont, C.; Schepper, W. D.; Pinoy, L.; Bruggen, B. V. D. Wetting resistance of commercial membrane distillation membranes in waste streams containing surfactants and Oil. Appl. Sci. 2017, 7, 118-130. doi: 10.3390/app7020118
-
[37]
Wang, Z.; Chen, Y.; Sun, X.; Duddu, R.; Lin, S. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J. Membr. Sci. 2018, 559, 183-195. doi: 10.1016/j.memsci.2018.04.045
-
[38]
Mehrparvar, A.; Rahimpour, A. Surface modification of novel polyether sulfone amide (PESA) ultrafiltration membranes by grafting hydrophilic monomers. J. Ind. Eng. Chem. 2015, 28, 359-368. doi: 10.1016/j.jiec.2015.03.016
-
[39]
Nath, K.; Patel, T. M.; Dave, H. K. Performance characteristics of surfactant treated commercial polyamide membrane in the nanofiltration of model solution of reactive yellow 160. J. Water Process Eng. 2016, 9, 27-37. doi: 10.1016/j.jwpe.2015.02.002
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1521
- HTML全文浏览量: 26

下载: