Polymerization Mechanism of Methyl Methacrylate Initiated by Ethyl Acetate/t-BuP4

De-Yong Xia Qi-Min Jiang Wen-Yan Huang Hong-Jun Yang Xiao-Qiang Xue Li Jiang Bi-Biao Jiang

Citation:  De-Yong Xia, Qi-Min Jiang, Wen-Yan Huang, Hong-Jun Yang, Xiao-Qiang Xue, Li Jiang, Bi-Biao Jiang. Polymerization Mechanism of Methyl Methacrylate Initiated by Ethyl Acetate/t-BuP4[J]. Chinese Journal of Polymer Science, 2019, 37(6): 598-603. doi: 10.1007/s10118-019-2228-x shu

Polymerization Mechanism of Methyl Methacrylate Initiated by Ethyl Acetate/t-BuP4

English


    1. [1]

      Schwesinger, R.; Schlemper, H. Peralkylated polyaminophosphazenes-extremely strong, neutral nitrogen bases. Angew. Chem. Int. Ed. 1987, 26, 1167–1169. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller, M.; Schmitt, D.; Fritz, H. Novel, very strong, uncharged auxiliary bases; design and synthesis of monomeric and polymer-bound triaminoiminophosphorane bases of broadly varied steric demand. Chem. Ber. 1994, 127, 2435–2454. doi: 10.1002/(ISSN)1099-0682

    3. [3]

      Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G. Z.; Peters, E. M.; Peters, K.; Schnering, H. G. V.; Walz, L. Extremely strong, uncharged auxiliary bases; monomeric and polymer-supported polyaminophosphazenes (P2-P5). Liebigs Ann. 1996, 7, 1055–1081.

    4. [4]

      Kaupmees, K.; Trummal, A.; Leito, I. Basicities of strong bases in water: A computational study. Croat. Chem. Acta 2014, 87, 385–395. doi: 10.5562/cca2472

    5. [5]

      Pietzonka, T.; Seebach, D. Alkylations of (R,R)-2-t-butyl-6-methyl-1,3-dioxan-4-ones which are not possible with lithium amides may be achieved with a schwesinger P4 Base. Chem. Ber. 1991, 124, 1837–1843. doi: 10.1002/(ISSN)1099-0682

    6. [6]

      Pietzonka, T.; Seebach, D. N-Perbenzylation of oligopeptides with P4-phosphazene base; a new protecting-group technique for modification and solubilization of peptides in apolar organic solvents. Angew. Chem. Int. Ed. 1992, 31, 1481–1482. doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Pietzonka, T.; Seebach, D. The P4-phosphazene base as part of a new metal-free initiator system for the anionic polymerization of methyl methacrylate. Angew. Chem. Int. Ed. 1993, 32, 716–717. doi: 10.1002/(ISSN)1521-3773

    8. [8]

      Isono, T.; Kamoshida, K.; Satoh, Y.; Takaoka, T.; Sato, S. I.; Satoh, T.; Kakuchi, T.; Synthesis of star- and figure-eight-shaped polyethers by t-Bu-P4-catalyzed ring-opening polymerization of butylene oxide. Macromolecules 2013, 46, 3841–3849. doi: 10.1021/ma4006654

    9. [9]

      Song, Q. L.; Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Organocatalytic copolymerization of mixed type monomers. Chinese J. Polym. Sci. 2017, 35, 581–601. doi: 10.1007/s10118-017-1925-6

    10. [10]

      Kondo, Y. in Superbases for organic synthesis: Guanidines, amidines, phosphazenes and related organocatalysts, John Wiley & Sons Ltd., 2009, pp. 145–185.

    11. [11]

      Boileau, S.; Illy, N. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters. Prog. Polym. Sci. 2011, 36, 1132–1151. doi: 10.1016/j.progpolymsci.2011.05.005

    12. [12]

      Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64–115. doi: 10.1016/j.progpolymsci.2015.12.001

    13. [13]

      Hu, S. Y.; Zhao, J. P.; Zhang, G. Z.; Schlaad, H. Macromolecular architectures through organocatalysis. Prog. Polym. Sci. 2017, 74, 34–77. doi: 10.1016/j.progpolymsci.2017.07.002

    14. [14]

      Hong, M.; Chen, E. Y. X. Towards truly sustainable polymers: A metal-free recyclable polyester from biorenewable non-strained γ-butyrolactone. Angew. Chem. Int. Ed. 2016, 55, 4188–4193. doi: 10.1002/anie.201601092

    15. [15]

      Hong, M.; Tang, X. Y.; Newell, B. S.; Chen, E. Y. X. " Nonstrained” γ-butyrolactone-based copolyesters: Copolymerization characteristics and composition-dependent (thermal, eutectic, cocrystallization, and degradation) properties. Macromolecules 2017, 50, 8469–8479. doi: 10.1021/acs.macromol.7b02174

    16. [16]

      Song, Q. L.; Xia, Y. N.; Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Tuning the crystallinity and degradability of PCL by organocatalytic copolymerization with δ-hexalactone. Polymer 2016, 102, 248–255. doi: 10.1016/j.polymer.2016.09.026

    17. [17]

      Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 2007, 129, 12610–12611. doi: 10.1021/ja074131c

    18. [18]

      Liu, J. J.; Chen, C.; Li, Z. J.; Wu, W. Z.; Zhi, X.; Zhang, Q. G.; Wu, H.; Wang, X.; Cui, S. D.; Guo, K. A squaramide and tertiary amine: An excellent hydrogen-bonding pair organocatalyst for living polymerization. Polym. Chem. 2015, 6, 3754–3757. doi: 10.1039/C5PY00508F

    19. [19]

      Liu, S. F.; Ren, C. L.; Zhao, N.; Shen, Y.; Li, Z. B. Phosphazene bases as organocatalysts for ring-opening polymerization of cyclic esters. Macromol. Rapid Commun. 2018, 39, 1800485. doi: 10.1002/marc.v39.24

    20. [20]

      Li, Y. X.; Zhao, N.; Wei, C. Z.; Sun, A. B.; Liu, S. F.; Li, Z. B. Binary organocatalytic system for ring-opening polymerization of ε-caprolactone and δ-valerolactone: Synergetic effects for enhanced selectivity. Eur. Polym. J. 2019, 111, 11–19. doi: 10.1016/j.eurpolymj.2018.12.012

    21. [21]

      Liu, S. F.; Li, H. K.; Zhao, N.; Li, Z. B. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett. 2018, 7, 624–628. doi: 10.1021/acsmacrolett.8b00353

    22. [22]

      Dentzer, L.; Bray, C.; Noinville, S.; Illy, N.; Guégan, P. Phosphazene-promoted metal-free ring-opening polymerization of 1,2-epoxybutane initiated by secondary amides. Macromolecules 2015, 48, 7755–7764. doi: 10.1021/acs.macromol.5b01638

    23. [23]

      Hassouna, L.; Illy, N.; Guégan, P. Phosphazene/triisobutylaluminum-promoted anionic ring-opening polymerization of 1,2-epoxybutane initiated by secondary carbamates. Polym. Chem. 2017, 8, 4005–4013. doi: 10.1039/C7PY00675F

    24. [24]

      Zhang, H. X.; Hu, S. Y.; Zhao, J. P.; Zhang, G. Z. Phosphazene-catalyzed alternating copolymerization of dihydrocoumarin and ethylene oxide: Weaker is better. Macromolecules 2017, 50, 4198–4205. doi: 10.1021/acs.macromol.7b00599

    25. [25]

      Zhang, J.; Liu, Q.; Ren, H. J.; Zhang, N. J.; Li, P. F.; Yang, K. Phosphoniums as catalysts for metal-free polymerization: Synthesis of well-defined poly(propylene oxide). J. Mol. Struc. 2017, 1148, 421–428. doi: 10.1016/j.molstruc.2017.05.094

    26. [26]

      Xia, Y. N.; Zhao, J. P. Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. Polymer 2018, 143, 343–361. doi: 10.1016/j.polymer.2018.03.047

    27. [27]

      Eßwein, B.; Molenberg, A.; Möller, M. Use of polyiminophosphazene bases for ring-opening polymerizations. Macromol. Symp. 1996.107. 331–340. doi: 10.1002/masy.v107.1

    28. [28]

      Molenberg, A.; Möller, M. A fast catalyst system for the ring-opening polymerization of cyclosiloxanes. Macromol. Rapid Commun. 1995, 16, 449–453. doi: 10.1002/marc.1995.030160606

    29. [29]

      Pibre, G.; Chaumont, P.; Fleury, E.; Cassagnau, P. Ring-opening polymerization of decamethylcyclopentasiloxane initiated by a superbase: Kinetics and rheology. Polymer 2008, 49, 234–240. doi: 10.1016/j.polymer.2007.11.017

    30. [30]

      Dyke, M. E. V.; Clarson, S. J. Reaction kinetics for the anionic ring-opening polymerization of tetraphenyltetramethylcyclotetrasiloxane using a fast initiator system. J. Inorg. Organomet. Polym. 1998, 8, 111–117. doi: 10.1023/A:1022487906770

    31. [31]

      Samuel, C.; Chalamet, Y.; Boisson, F.; Majesté, J.; Becquart, F.; Fleury, E. Highly efficient metal-free organic catalysts to design new environmentally friendly starch-based blends. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 493–503. doi: 10.1002/pola.27022

    32. [32]

      Brignou, P.; Gil, M. P.; Casagrande, O.; Carpentier, J. F.; Guillaume, S. M. Polycarbonates derived from green acids: Ring-opening polymerization of seven-membered cyclic carbonates. Macromolecules 2010, 43, 8007–8017. doi: 10.1021/ma1014098

    33. [33]

      Chen, J. L.; Li, M. S.; He, W. J.; Tao, Y. H.; Wang, X. H. Facile organocatalyzed synthesis of poly(ε-lysine) under mild conditions. Macromolecules 2017, 50, 9128–9134. doi: 10.1021/acs.macromol.7b02331

    34. [34]

      Jr, W. M.; Campbell, G. C.; Davidson, F. Poly(aminophosphazene)s and protophosphatranes mimic classical strong anionic base catalysts in the anionic ring-opening polymerization of lactams. Macromolecules 1996, 29, 6475–6480. doi: 10.1021/ma960659i

    35. [35]

      Börner, H. G.; Heitz, W. Anionic polymerization of butyl acrylate with metal free initiator systems containing [1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)-phosphor-anylidenamino]-2λ5,4λ55-catenadi(phosphazene)] base (P4-tert-butyl-phosphazene base). Macromol. Chem. Phys. 1998, 199, 1815–1820.

    36. [36]

      Kakuchi, T.; Chen, Y.; Kitakado, J.; Mori, K.; Fuchise, K.; Satoh, T. Organic superbase as an efficient catalyst for group transfer polymerization of methyl methacrylate. Macromolecules 2011, 44, 4641–4647. doi: 10.1021/ma200720p

    37. [37]

      Weideman, I.; Pfukwa, R.; Klumperman, B. Phosphazene base promoted anionic polymerization of n-butyraldehyde. Eur. Polym. J. 2017, 93, 97–102. doi: 10.1016/j.eurpolymj.2017.05.034

    38. [38]

      Zhao, N.; Ren, C. L.; Li, H. K.; Li, Y. X.; Liu, S. F.; Li, Z. B. Selective ring-opening polymerization of non-strained γ-butyrolactone catalyzed by a cyclic trimeric phosphazene base. Angew. Chem. Int. Ed. 2017, 56, 12987–12990. doi: 10.1002/anie.201707122

    39. [39]

      Li, H. K.; Zhao, N.; Ren, C. L.; Liu, S. F.; Li, Z. B. Synthesis of linear and star poly(ε-caprolactone) with controlled and high molecular weights via cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polym. Chem. 2017, 8, 7369–7374. doi: 10.1039/C7PY01673E

    40. [40]

      Wang, J.; Li, B. X.; Xin, D. H.; Hu, R. R.; Zhao, Z. J.; Qin, A. J.; Tang, B. Z. Superbase catalyzed regio-selective polyhydroalkoxylation of alkynes: A facile route towards functional poly(vinyl ether)s. Polym. Chem. 2017, 8, 2713–2722. doi: 10.1039/C7PY00363C

    41. [41]

      Fevre, M.; Vignolle, J.; Heroguez, V.; Taton, D.; Tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP) as potent organocatalyst for group transfer polymerization of alkyl (meth)acrylates. Macromolecules 2012; 45, 7711–7718. doi: 10.1021/ma301412z

    42. [42]

      Wang, D.; Hadjichristidis, N. Allyl borates: A novel class of polyhomologation initiators. Chem. Commun. 2017, 53, 1196–1199. doi: 10.1039/C6CC09047H

    43. [43]

      Lascelles, S. F.; Malet, F.; Mayada, R.; Billingham, N. C.; Armes, S. P. Latex syntheses using novel tertiary amine methacrylate-based macromonomers prepared by oxyanionic polymerization. Macromolecules 1999, 32, 2462–2471. doi: 10.1021/ma981967e

    44. [44]

      Yang, H. J.; Xu, J. B.; Pispas, S.; Zhang, G. Hybrid copolymerization of ε-caprolactone and methyl methacrylate. Macromolecules 2012, 45, 3312–3317. doi: 10.1021/ma300291q

    45. [45]

      Yang, H. J.; Bai, T.; Xue, X. Q.; Huang, W. Y.; Chen, J. H.; Qian, X. L.; Zhang, G. Z.; Jiang, B. B. A versatile strategy for synthesis of hyperbranched polymers with commercially available methacrylate inimer. RSC Adv. 2015, 5, 60401–60408. doi: 10.1039/C5RA09851C

    46. [46]

      Yang, H. J.; Bai, T.; Xue, X. Q.; Huang, W. Y.; Chen, J. H.; Qian, X. L.; Zhang, G. Z.; Jiang, B. B. A simple route to vinyl-functionalized hyperbranched polymers: Self-condensing anionic copolymerization of allyl methacrylate and hydroxyethyl methacrylate. Polymer 2015, 72, 63–68. doi: 10.1016/j.polymer.2015.06.048

    47. [47]

      Zhang, Y. T.; Schmitt, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination. J. Am. Chem. Soc. 2013, 135, 17925–17942. doi: 10.1021/ja4088677

    48. [48]

      Odian, G. in Principles of Polymerization, 4th Ed., John Wiley & Sons, Hoboken, NJ, USA, 2004.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1479
  • HTML全文浏览量:  15
文章相关
  • 发布日期:  2019-06-01
  • 收稿日期:  2018-12-11
  • 修回日期:  2019-01-08
  • 网络出版日期:  2019-02-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章