Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing

Wei-Ke Xu Jing-Yu Tang Zhang Yuan Cai-Yun Cai Xiao-Bin Chen Shu-Quan Cui Peng Liu Lin Yu Kai-Yong Cai Jian-Dong Ding

Citation:  Wei-Ke Xu, Jing-Yu Tang, Zhang Yuan, Cai-Yun Cai, Xiao-Bin Chen, Shu-Quan Cui, Peng Liu, Lin Yu, Kai-Yong Cai, Jian-Dong Ding. Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing[J]. Chinese Journal of Polymer Science, 2019, 37(6): 548-559. doi: 10.1007/s10118-019-2212-5 shu

Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing

English


    1. [1]

      Diegelmann, R. F.; Evans, M. C. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci-Landmrk. 2004, 9, 283-289. doi: 10.2741/1184

    2. [2]

      Boateng, J. S.; Matthews, K. H.; Stevens, H. N. E.; Eccleston, G. M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008, 97, 2892-2923. doi: 10.1002/jps.21210

    3. [3]

      Xu, R.; Luo, G. X.; Xia, H. S.; He, W. F.; Zhao, J.; Liu, B.; Tan, J. L.; Zhou, J. Y.; Liu, D. S.; Wang, Y. Z.; Yao, Z. H.; Zhan, R. X.; Yang, S. S.; Wu, J. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 2015, 40, 1-11. doi: 10.1016/j.biomaterials.2014.10.077

    4. [4]

      Malmsjo, M.; Ingemansson, R.; Martin, R.; Huddleston, E. Negative-pressure wound therapy using gauze or open-cell polyurethane foam: Similar early effects on pressure transduction and tissue contraction in an experimental porcine wound model. Wound Repair Regen. 2009, 17, 200-205. doi: 10.1111/wrr.2009.17.issue-2

    5. [5]

      Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. Improved mechanical properties of poly(butylene succinate) membrane by co-electrospinning with gelatin. Chinese J. Polym. Sci. 2018, 36, 1063-1069. doi: 10.1007/s10118-018-2112-0

    6. [6]

      Vargas, E. A.; do Vale Baracho, N. C.; de Brito, J.; de Queiroz, A. A. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications. Acta Biomater. 2010, 6, 1069-1078. doi: 10.1016/j.actbio.2009.09.018

    7. [7]

      Bu, Y. Z.; Sun, G. Z.; Zhang, L. C.; Liu, J. H.; Yang, F.; Tang, P. F.; Wu, D. C. POSS-modified PEG adhesives for wound closure. Chinese J. Polym. Sci. 2017, 35, 1231-1242. doi: 10.1007/s10118-017-1958-x

    8. [8]

      Ishihara, J.; Ishihara, A.; Fukunaga, K.; Sasaki, K.; White, M. J. V.; Briquez, P. S.; Hubbell, J. A. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat. Commun. 2018, 9, 2163. doi: 10.1038/s41467-018-04525-w

    9. [9]

      Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P. X.; Guo, B. L. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185-199. doi: 10.1016/j.biomaterials.2018.08.044

    10. [10]

      Vukovic, J. S.; Babic, M. M.; Antic, K. M.; Miljkovic, M. G.; Peric-Grujic, A. A.; Filipovic, J. M.; Tomic, S. L. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application. Mater. Chem. Phys. 2015, 164, 51-62. doi: 10.1016/j.matchemphys.2015.08.022

    11. [11]

      Zhao, X.; Guo, B. L.; Wu, H.; Liang, Y. P.; Ma, P. X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784. doi: 10.1038/s41467-018-04998-9

    12. [12]

      Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J. X.; Chen, X. S. Antibacterial Hydrogels. Adv. Sci. 2018, 5, 1700527. doi: 10.1002/advs.v5.5

    13. [13]

      Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239-1250. doi: 10.1007/s10118-018-2156-1

    14. [14]

      Zhao, X.; Lang, Q.; Yildirimer, L.; Lin, Z. Y.; Cui, W.; Annabi, N.; Ng, K. W.; Dokmeci, M. R.; Ghaemmaghami, A. M.; Khademhosseini, A. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 2016, 5, 108-118. doi: 10.1002/adhm.201500005

    15. [15]

      Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z. Y.; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66-77. doi: 10.1016/j.actbio.2016.11.017

    16. [16]

      Gong, C. Y.; Wu, Q. J.; Wang, Y. J.; Zhang, D. D.; Luo, F.; Zhao, X.; Wei, Y. Q.; Qian, Z. Y. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377-6387. doi: 10.1016/j.biomaterials.2013.05.005

    17. [17]

      Hong, J. H.; Lee, H. J.; Jeong, B. Injectable polypeptide thermogel as a tissue engineering system for hepatogenic differentiation of Tonsil-derived mesenchymal stem cells. ACS Appl. Mater. Interfaces 2017, 9, 11568-11576. doi: 10.1021/acsami.7b02488

    18. [18]

      Yun, E. J.; Yon, B.; Joo, M. K.; Jeong, B. Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel. Biomacromolecules 2012, 13, 1106-1111. doi: 10.1021/bm2018596

    19. [19]

      Li, X. L.; Fan, R. R.; Tong, A. P.; Yang, M. J.; Deng, J. J.; Zhou, L. X.; Zhang, X. N.; Guo, G. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int. J. Pharm. 2015, 495, 560-571. doi: 10.1016/j.ijpharm.2015.09.005

    20. [20]

      Cui, S. Q.; Yu, L.; Ding, J. D. Injectable thermogels based on block copolymers of appropriate amphiphilicity. Acta Polymerica Sinica (in Chinese) 2018, 8, 863-881.

    21. [21]

      Fu, S. Z.; Ni, P. Y.; Wang, B. Y.; Chu, B. Y.; Zheng, L.; Luo, F.; Luo, J. C.; Qian, Z. Y. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012, 33, 4801-4809. doi: 10.1016/j.biomaterials.2012.03.040

    22. [22]

      Zhao, X.; Wu, H.; Guo, B. L.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34-47. doi: 10.1016/j.biomaterials.2017.01.011

    23. [23]

      Zheng, Y.; Cheng, Y.; Chen, J.; Ding, J. X.; Li, M.; Li, C.; Wang, J. C.; Chen, X. S. Injectable hydrogel-microsphere construct with sequential degradation for locally synergistic chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 3487-3496. doi: 10.1021/acsami.6b15245

    24. [24]

      Moon, H. J.; Ko, D. Y.; Park, M. H.; Joo, M. K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev. 2012, 41, 4860-4883. doi: 10.1039/c2cs35078e

    25. [25]

      Zhang, Y. B.; Zhang, J.; Chang, F.; Xu, W. G.; Ding, J. X. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel. Mater. Sci. Eng: C Mater. Biol. Appl. 2018, 88, 79-87. doi: 10.1016/j.msec.2018.02.028

    26. [26]

      Chen, Y. P.; Li, Y. Z.; Shen, W. J.; Li, K.; Yu, L.; Chen, Q.; Ding, J. D. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci. Rep. 2016, 6, 31593. doi: 10.1038/srep31593

    27. [27]

      McKenzie, M.; Betts, D.; Suh, A.; Bui, K.; Tang, R.; Liang, K. X.; Achilefu, S.; Kwon, G. S.; Cho, H. Proof-of-concept of polymeric sol-gels in multi-drug delivery and intraoperative image-guided surgery for peritoneal ovarian cancer. Pharm. Res. 2016, 33, 2298-2306. doi: 10.1007/s11095-016-1968-3

    28. [28]

      Li, K.; Yu, L.; Liu, X.; Chen, C.; Chen, Q.; Ding, J. D. A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 2013, 34, 2834-2842. doi: 10.1016/j.biomaterials.2013.01.013

    29. [29]

      Chen, Y. P.; Luan, J. B.; Shen, W. J.; Lei, K. W.; Yu, L.; Ding, J. D. Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl. Mater. Interfaces 2016, 8, 30703-30713. doi: 10.1021/acsami.6b09415

    30. [30]

      Shen, W. J.; Chen, X. B.; Luan, J. B.; Wang, D. N.; Yu, L.; Ding, J. D. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces 2017, 9, 40031-40046. doi: 10.1021/acsami.7b11998

    31. [31]

      Cao, L. P.; Li, Q. L.; Zhang, C.; Wu, H. C.; Yao, L. Q.; Xu, M. D.; Yu, L.; Ding, J. D. Safe and efficient colonic endoscopic submucosal dissection using an injectable hydrogel. ACS Biomater. Sci. Eng. 2016, 2, 393-402. doi: 10.1021/acsbiomaterials.5b00516

    32. [32]

      Li, X. Z.; Ding, J. X.; Zhang, Z. Z.; Yang, M.; Yu, J. K.; Wang, J.; Chang, F.; Chen, X. S. Kartogenin-incorporated thermogel supports stem cells for significant cartilage regeneration. ACS Appl. Mater. Interfaces 2016, 8, 5148-5159. doi: 10.1021/acsami.5b12212

    33. [33]

      Zhang, Y. B.; Ding, J. X.; Sun, D. K.; Sun, H.; Zhuang, X. L.; Chang, F.; Wang, J. C.; Chen, X. S. Thermogel-mediated sustained drug delivery for in situ malignancy chemotherapy. Mater. Sci. Eng: C Mater. Biol. Appl. 2015, 49, 262-268. doi: 10.1016/j.msec.2015.01.026

    34. [34]

      Zhang, W.; Ning, C.; Xu, W.; Hu, H.; Li, M.; Zhao, G.; Ding, J. X.; Chen, X. S. Precision-guided long-acting analgesia by Gel-immobilized bupivacaine-loaded microsphere. Theranostics 2018, 8, 3331-3347. doi: 10.7150/thno.25276

    35. [35]

      Zhang, W.; Xu, W.; Ning, C.; Li, M.; Zhao, G.; Jiang, W.; Ding, J. X.; Chen, X. S. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia. Biomaterials 2018, 181, 378-391. doi: 10.1016/j.biomaterials.2018.07.051

    36. [36]

      Strodtbeck, F. Physiology of wound healing. Newborn Infant Nurs. Rev. 2001, 1, 43-52. doi: 10.1053/nbin.2001.23176

    37. [37]

      Kruse, C. R.; Nuutila, K.; Lee, C. C. Y.; Kiwanuka, E.; Singh, M.; Caterson, E. J.; Eriksson, E.; Sorensen, J. A. The external microenvironment of healing skin wounds. Wound Repair Regen. 2015, 23, 456-464. doi: 10.1111/wrr.12303

    38. [38]

      Yu, L.; Chang, G. T.; Zhang, H.; Ding, J. D. Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1122-1133. doi: 10.1002/pola.21876

    39. [39]

      Shim, M. S.; Lee, H. T.; Shim, W. S. Poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. B 2002, 61, 188-196. doi: 10.1002/(ISSN)1097-4636

    40. [40]

      Yu, L.; Zhang, Z.; Zhang, H.; Ding, J. D. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 2009, 10, 1547-1553. doi: 10.1021/bm900145g

    41. [41]

      Yu, L.; Zhang, Z.; Zhang, H. A.; Ding, J. D. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 2010, 11, 2169-2178. doi: 10.1021/bm100549q

    42. [42]

      Yu, L.; Li, K.; Liu, X.; Chen, C.; Bao, Y. C.; Ci, T. Y.; Chen, Q. H.; Ding, J. D. In vitro and in vivo evaluation of a once-weekly formulation of an antidiabetic peptide drug exenatide in an injectable thermogel. J. Pharm. Sci. 2013, 102, 4140-4149. doi: 10.1002/jps.23735

    43. [43]

      Zhang, L.; Shen, W. J.; Luan, J. B.; Yang, D. X.; Wei, G.; Yu, L.; Lu, W. Y.; Ding, J. D. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015, 23, 271-281. doi: 10.1016/j.actbio.2015.05.005

    44. [44]

      Bowler, P. G. Wound pathophysiology, infection and therapeutic options. Ann. Med. 2002, 34, 419-427. doi: 10.1080/078538902321012360

    45. [45]

      Zanger, P.; Holzer, J.; Schleucher, R.; Scherbaum, H.; Schittek, B.; Gabrysch, S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human beta-defensin 2. Infect. Immun. 2010, 78, 3112-3117. doi: 10.1128/IAI.00078-10

    46. [46]

      Bernard, P. Management of common bacterial infections of the skin. Curr. Opin. Infect. Dis. 2008, 21, 122-128. doi: 10.1097/QCO.0b013e3282f44c63

    47. [47]

      Ye, S.; Jiang, L.; Wu, J. M.; Su, C.; Huang, C. B.; Liu, X. F.; Shao, W. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2018, 10, 5862-5870. doi: 10.1021/acsami.7b16680

    48. [48]

      Lee, Y. M.; Kim, S. S.; Park, M. H.; Kim, K. W.; Sung, Y. K.; Kang, I. Y. Beta-chitin-based wound dressing containing silver sulfurdiazine. J. Mater. Sci: Mater. Med. 2000, 11, 817-823. doi: 10.1023/A:1008961730929

    49. [49]

      Wang, Y.; Cui, R.; Li, G.; Gao, Q.; Yuan, S.; Altmeyer, R.; Zou, G. Teicoplanin inhibits Ebola pseudovirus infection in cell culture. Antiviral Res. 2016, 125, 1-7. doi: 10.1016/j.antiviral.2015.11.003

    50. [50]

      Gocer, H.; Onger, M. E.; Kuyubasi, N.; Cirakli, A.; Kir, M. C. The effect of teicoplanin on fracture healing: an experimental study. Eklem Hastalik Cerrahisi. 2016, 27, 16-21. doi: 10.5606/ehc.2016.04

    51. [51]

      Kester, R. C.; Antrum, R.; Thornton, C. A.; Ramsden, C. H.; Harding, I. A. comparison of teicoplanin versus cephradine plus metronidazole in the prophylaxis of post-operative infection in vascular surgery. J. Hosp. Infect. 1999, 41, 233-243. doi: 10.1016/S0195-6701(99)90022-1

    52. [52]

      Rybak, M. J.; Lerner, S. A.; Levine, D. P.; Albrecht, L. M.; Mcneil, P. L.; Thompson, G. A.; Kenny, M. T.; Yuh, L. Teicoplanin pharmacokinetics in intravenous drug-abusers being treated for bacterial-endocarditis. Antimicrob. Agents Chemother. 1991, 35, 696-700. doi: 10.1128/AAC.35.4.696

    53. [53]

      Peng, L. H.; Wei, W.; Qi, X. T.; Shan, Y. H.; Zhang, F. J.; Chen, X.; Zhu, Q. Y.; Yu, L.; Liang, W. Q.; Gao, J. Q. Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/β-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol. Pharmaceut. 2013, 10, 3090-3102. doi: 10.1021/mp400162k

    54. [54]

      Luan, J. B.; Zhang, Z.; Shen, W. J.; Chen, Y. P.; Yang, X.; Chen, X.; Yu, L.; Sun, J.; Ding, J. D. Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl. Mater. Interfaces 2018, 10, 30235-30246. doi: 10.1021/acsami.8b13548

    55. [55]

      Faust, S. N.; Levin, M.; Harrison, O. B.; Goldin, R. D.; Lockhart, M. S.; Kondaveeti, S.; Laszik, Z.; Esmon, C. T.; Heyderman, R. S. Dysfunction of endothelial protein C activation in severe meningococcal sepsis. New Engl. J. Med. 2001, 345, 408-416. doi: 10.1056/NEJM200108093450603

    56. [56]

      Zhang, C. Z.; Niu, J.; Chong, Y. S.; Huang, Y. F.; Chu, Y.; Xie, S. Y.; Jiang, Z. H.; Peng, L. H. Porous microspheres as promising vehicles for the topical delivery of poorly soluble asiaticoside accelerate wound healing and inhibit scar formation in vitro & in vivo. Eur. J. Pharm. Biopharm. 2016, 109, 1-13. doi: 10.1016/j.ejpb.2016.09.005

    57. [57]

      Van Staden Adu, P.; Heunis, T.; Smith, C.; Deane, S.; Dicks, L. M. Efficacy of lantibiotic treatment of staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob. Agents Chemother. 2016, 60, 3948-55. doi: 10.1128/AAC.02938-15

    58. [58]

      Hrabalikova, M.; Merchan, M.; Ganbold, S.; Sedlarik, V.; Valasek, P.; Saha, P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015, 35, 319-327. doi: 10.1515/polyeng-2014-0125

    59. [59]

      Ricke, S. C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Sci. 2003, 82, 632-639. doi: 10.1093/ps/82.4.632

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1558
  • HTML全文浏览量:  21
文章相关
  • 发布日期:  2019-06-01
  • 收稿日期:  2018-11-17
  • 修回日期:  2018-12-09
  • 网络出版日期:  2019-01-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章