固体氧化物直接碳燃料电池阳极反应过程分析

刘国阳 周安宁 张亚婷 蔡江涛 党永强 邱介山

引用本文: 刘国阳, 周安宁, 张亚婷, 蔡江涛, 党永强, 邱介山. 固体氧化物直接碳燃料电池阳极反应过程分析[J]. 燃料化学学报, 2015, 43(9): 1100-1105. shu
Citation:  LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology, 2015, 43(9): 1100-1105. shu

固体氧化物直接碳燃料电池阳极反应过程分析

    通讯作者: 周安宁,教授,Tel:029-85583549,E-mail:zhouanning2004@aliyun.com.cn。
  • 基金项目:

    国家自然科学基金(21276207) (21276207)

    NSFC-新疆联合基金重点项目(U1203292) (U1203292)

    陕西省自然科学基础研究计划(2014JM2043)。 (2014JM2043)

摘要: 以氧化钇稳定的氧化锆(YSZ)为电解质组装成直接碳燃料电池(DCFC),分别以活性炭(AC)、石墨(G)、神府半焦(SC)作为DCFC燃料,研究了碳燃料的特性、电池操作温度以及阳极反应气氛等对DCFC阳极反应过程的影响。结果表明,三种碳燃料在空气、CO2气氛中氧化反应活性顺序为AC > SC > G,当三种碳材料作为DCFC燃料时,活性炭作为燃料的DCFC性能最好,半焦燃料次之,石墨作为燃料的DCFC性能最差,而且燃料反应活性与其表面含氧官能团、孔隙结构有关;DCFC的阳极反应过程存在碳燃料直接氧化为CO2、CO2与C反应转化为CO,以及CO氧化为CO2等。

English

  • 
    1. [1] DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.[1] DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.

    2. [2] CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.[2] CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.

    3. [3] ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.[3] ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.

    4. [4] GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.[4] GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.

    5. [5] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.[5] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.

    6. [6] TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.[6] TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.

    7. [7] ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.[7] ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.

    8. [8] FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.[8] FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.

    9. [9] ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.[9] ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.

    10. [10] LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.[10] LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.

    11. [11] LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.[11] LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.

    12. [12] LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.[12] LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.

    13. [13] NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.[13] NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.

    14. [14] WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.[14] WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.

    15. [15] CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.[15] CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.

    16. [16] DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.[16] DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.

    17. [17] ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.[17] ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.

    18. [18] WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.[18] WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.

    19. [19] SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.[19] SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.

    20. [20] KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.[20] KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.

    21. [21] TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.[21] TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2015-02-05
  • 网络出版日期:  2015-05-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章