Citation: LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology, 2015, 43(9): 1100-1105.
固体氧化物直接碳燃料电池阳极反应过程分析
English
Analysis of the reaction process in solid oxide direct carbon fuel cell anode
-
Key words:
- direct carbon fuel cell
- / carbonaceous fuel
- / anode reaction
- / active carbon
- / semi-coke
- / graphite
-
-
-
[1] DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.[1] DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.
-
[2] CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.[2] CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.
-
[3] ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.[3] ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.
-
[4] GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.[4] GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.
-
[5] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.[5] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.
-
[6] TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.[6] TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.
-
[7] ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.[7] ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.
-
[8] FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.[8] FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.
-
[9] ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.[9] ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.
-
[10] LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.[10] LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.
-
[11] LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.[11] LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.
-
[12] LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.[12] LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.
-
[13] NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.[13] NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.
-
[14] WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.[14] WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.
-
[15] CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.[15] CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.
-
[16] DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.[16] DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.
-
[17] ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.[17] ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.
-
[18] WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.[18] WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.
-
[19] SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.[19] SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.
-
[20] KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.[20] KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.
-
[21] TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.[21] TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 0
- HTML全文浏览量: 0

下载: