Citation: QIU Li-Gan, WANG Mao-Yuan, SUN Yu-Feng, WANG Ting-Mei. Chemical Stability and Electrical Properties of Ba1.03Ce0.9-xZrxTm0.1O3-α Solid Electrolytes[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2643-2649. shu

Chemical Stability and Electrical Properties of Ba1.03Ce0.9-xZrxTm0.1O3-α Solid Electrolytes

  • Corresponding author: QIU Li-Gan, 
  • Received Date: 2 January 2012
    Available Online: 11 June 2012

    Fund Project: 江苏省高校“青蓝工程”和江苏省高校自然科学基金(No.07KJB150126)资助项目. (No.07KJB150126)

  • Ba1.03Ce0.9-xZrxTm0.1O3-α(x=0.2, 0.4) solid electrolytes with nonstoichiometric composition were prepared by high temperature solid-state reaction. Phase composition and fracture morphologies of the two materials were characterized by using XRD and SEM, respectively. Chemical stability against carbon dioxide and water steam at 900 ℃ was tested. Ionic conduction was studied by using gas concentration cell and ac impedance spectroscopy methods, and the performances of the hydrogen-air fuel cells using the two materials as solid electrolytes were evaluated in the temperature range of 500~900 ℃. The results indicate that the material with x of 0.2 is a single-phase perovskite-type orthorhombic system, and the material with x of 0.4 is a single-phase perovskite-type cubic system. They both have high density and good chemical stability. In wet hydrogen, Ba1.03Ce0.7Zr0.2Tm0.1O3-α shows a pure ionic conduction, but Ba1.03Ce0.5Zr0.4Tm0.1O3-α shows a mixed conduction of ion and electron from 500 to 900 ℃. The two materials both show a mixed conduction of proton, oxide ion and electronic hole in wet air, and a mixed conduction of proton, oxide ion and electron in hydrogen-air fuel cell. The fuel cells using the two materials as solid electrolytes can both work stably. The ionic conduction and performance of the hydrogen-air fuel cell of Ba1.03Ce0.7Zr0.2Tm0.1O3-α are superior to those of Ba1.03Ce0.5Zr0.4Tm0.1O3-α under the same experimental conditions.
  • 加载中
    1. [1]

      [1] Iwahara H, Uchida H, Ono K, et al. J. Electrochem. Soc., 1988,135:529-533

    2. [2]

      [2] Hibino T, Hashimoto A, Suzuki M, et al. J. Phys. Chem. B, 2001,105:11399-11401

    3. [3]

      [3] Iwahara H, Asakura Y, Katahira K, et al. Solid State Ionics, 2004,168:299-310

    4. [4]

      [4] Peng R R, Wu Y, Yang L Z, et al. Solid State Ionics, 2006, 177:389-393

    5. [5]

      [5] Cai M Y, Liu S, Efimov K, et al. J. Membrane Science, 2009, 343:90-96

    6. [6]

      [6] Barison S, Battagliarin M, Cavallin T, et al. J. Mater. Chem., 2008,18:5120-5128

    7. [7]

      [7] Katahira K, Kohchi Y, Shimura T, et al. Solid State Ionics, 2000,138:91-98

    8. [8]

      [8] Kreuer K D. Solid State Ionics, 1997,97:1-15

    9. [9]

      [9] Ma G L, Matsumoto H, Iwahara H. Solid State Ionics, 1999, 122:237-247

    10. [10]

      [10] MA Gui-Lin(马桂林), QIU Li-Gan(仇立干), CHEN Rong (陈蓉). Acta Chim. Sinica (Huaxue Xuebao), 2002,60:2135-2140

    11. [11]

      [11] Qiu L G, Ma G L, Wen D J. J. Rare Earths, 2004,22:678-682

    12. [12]

      [12] WANG Mao-Yuan(王茂元), QIU Li-Gan(仇立干). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25:339-344

    13. [13]

      [13] Wang X W, Yin J L, Xu J H, et al. Chin. J. Chem., 2011, 29:1114-1118

    14. [14]

      [14] Wang M Y, Qiu L G, Cao X. J. Rare Earths, 2011,29:678-682

    15. [15]

      [15] QIU Li-Gan(仇立干), WANG Mao-Yuan(王茂元). Acta Chim. Sinica (Huaxue Xuebao), 2010,68:276-282

    16. [16]

      [16] Qiu L G, Ma G L, Wen D J. Chin. J. Chem., 2005,23:1641-1645

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(0)
  • Abstract views(311)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return