Citation: JIANG Ke, ZHOU Kang-Gen, PENG Jia-Le. Predominance Diagrams for NH4+-Mg2+-PO43--H+-H2O System[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2605-2611. shu

Predominance Diagrams for NH4+-Mg2+-PO43--H+-H2O System

  • Corresponding author: ZHOU Kang-Gen, 
  • Received Date: 15 March 2012
    Available Online: 1 July 2012

    Fund Project: 国家自然科学基金(No.51174238)资助项目. (No.51174238)

  • The thermodynamics of NH4+-Mg2+-PO43--H+-H2O system was investigated based on the construction of predominance diagrams. The lgCT,Mg-lgCT,P and lgCT,P-pH diagrams were constructed at an arbitrary Mg/P molar ratio with consideration of the ion strength influence(CT,Mg: total concentration of magnesium; CT,P: total concentration of phosphorus; CT,N: total concentration of nitrogen). The thermodynamic stable zones of struvite (MgNH4PO4·6H2O), bobierrite (Mg3(PO4)2·8H2O), newberyite (MgHPO4·3H2O), and magnesium hydroxide (Mg(OH)2) were determined. The results show that struvite and bobierrite are the dominating phases in a wide range of pH value. Struvite and newberyite coexist with solute phase at low pH value and high total concentration of phosphorus while struvite and magnesium hydroxide are more stable at the alkaline condition. The minimum total concentration of nitrogen appears at pH value of 9.08~9.52 while struvite and bobierrite coexist with the solute phase. The predominance diagrams could be used to predict the precipitation-dissolution equilibrium of struvite for ammonia nitrogen removal and recovery from wastewater.
  • 加载中
    1. [1]

      [1] Bonmatí A, Flotats X. Waste Manag., 2003,23(3):261-272

    2. [2]

      [2] Doyle J D, Parsons S A. Water Res., 2002,36(16):3925-3940

    3. [3]

      [3] Jokela J P Y, Kettunen R H, Sormunen K M, et al. Water Res., 2002,36(16):4079-4087

    4. [4]

      [4] Uludag-Demirer S, Demirer G N, Chen S. Process Biochem., 2005,40(12):3667-3674

    5. [5]

      [5] Li X Z, Zhao Q L, Hao X D. Waste Manag., 1999,19(6):409-415

    6. [6]

      [6] Zhang W X, Lau A. J. Chem. Technol. Biotechnol., 2007,82 (6):598-602

    7. [7]

      [7] Zhang C, Chen Y G. Environ. Sci. Technol., 2009,43(16): 6164-6170

    8. [8]

      [8] Taylor A W, Frazier A W, Gurney E L. Trans. Faraday Soc., 1963,59:1580-1584

    9. [9]

      [9] Snoeyink V L, Jenkins D. Water Chemistry. New York: John Wiley and Sons, 1980:306-309

    10. [10]

      [10] Stumm W, Morgan J J. Aquatic Chemistry. New York: Wiley-Interscience, 1970:408-409

    11. [11]

      [11] Ohlinger K N, Young T M, Schroeder E D. Water Res., 1998,32(12):3607-3614

    12. [12]

      [12] Ronteltap M, Maurer M, Gujer W. Water Res., 2007,41(5): 977-984

    13. [13]

      [13] Aage H K, Andersen B L, Biota A, et al. J. Radioanal. Nucl. Chem., 1997,223(1/2)213-215

    14. [14]

      [14] Mijangos F, Kamel M, Lesmes G, et al. React. Funct. Polym., 2004,60:151-161

    15. [15]

      [15] Wang J S, Song Y H, Yuan P, et al. Chemosphere., 2006,65 (7):1182-1187

    16. [16]

      [16] WANG Jian-Sen(王建森), SONG Yong-Hui(宋永会), YUAN Peng(袁鹏), et al. Acta Scientiae Circumstantiae (Huanjing Kexue Xuebao), 2006,26(2):208-213

    17. [17]

      [17] Ali M I, Schneider P A, Hudson N. J. Indian Inst. Sci., 2005,85(3):141-149

    18. [18]

      [18] Miles A, Ellis T G. Water Sci. Technol., 2001,43(11)259-266

    19. [19]

      [19] Babic′-Ivancic′ V, Kontrec J, Brecevic′ L. Urol. Res., 2004, 32(5)350-356

    20. [20]

      [20] Golubev S V, Savenko A V. Experiment in Geosci., 2001, 10:76

    21. [21]

      [21] Dempsy B A. Proceedings of the 52nd Industrial Waste Conference. Purdue Research Foun Ed., Indiana: CRC Press, 1997:369-376

    22. [22]

      [22] JIANG Ke(姜科), ZHOU Kang-Gen(周康根), PENG Jia-Le (彭佳乐). J. Cent. South. Univ. T. (Sci. Technol.) (Zhongnan Daxue Xuebao: Ziran Kexue Ban), 2009,40(5):1178-1182.

    23. [23]

      [23] Babic-Ivancic V, Kontrec J, Brecevic L, et al. Water Res., 2006,40(18):3447-3455

    24. [24]

      [24] Musvoto E V, Wentzel M C, Ekama G. A. Water Res., 2000,34(6):1868-1880

    25. [25]

      [25] Warmadewanthi, Liu J C. Sep. Purif. Technol., 2009,64(3): 368-373

    26. [26]

      [26] Stratful I, Scrimshaw M D, Lester J N. Water Res., 2001,35 (17):4191-4199

    27. [27]

      [27] Diwani G E, Rafie S E, Ibiari N N E, et al. Desalination., 2007,214(1/2/3):200-214

    28. [28]

      [28] Gunay A, Karadag D, Tosun I, et al. J. Hazard. Mater., 2008,156(1/2/3):619-623

    29. [29]

      [29] Pastor L, Mangin D, Barat R, et al. Bioresource Technol., 2008,99(14):6285-6291

    30. [30]

      [30] Booker N A, Priestley A J, Fraser I H. Environ. Technol., 1999,20(7):777-782

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(292)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return