Citation:
JIANG Ke, ZHOU Kang-Gen, PENG Jia-Le. Predominance Diagrams for NH4+-Mg2+-PO43--H+-H2O System[J]. Chinese Journal of Inorganic Chemistry,
;2012, 28(12): 2605-2611.
-
The thermodynamics of NH4+-Mg2+-PO43--H+-H2O system was investigated based on the construction of predominance diagrams. The lgCT,Mg-lgCT,P and lgCT,P-pH diagrams were constructed at an arbitrary Mg/P molar ratio with consideration of the ion strength influence(CT,Mg: total concentration of magnesium; CT,P: total concentration of phosphorus; CT,N: total concentration of nitrogen). The thermodynamic stable zones of struvite (MgNH4PO4·6H2O), bobierrite (Mg3(PO4)2·8H2O), newberyite (MgHPO4·3H2O), and magnesium hydroxide (Mg(OH)2) were determined. The results show that struvite and bobierrite are the dominating phases in a wide range of pH value. Struvite and newberyite coexist with solute phase at low pH value and high total concentration of phosphorus while struvite and magnesium hydroxide are more stable at the alkaline condition. The minimum total concentration of nitrogen appears at pH value of 9.08~9.52 while struvite and bobierrite coexist with the solute phase. The predominance diagrams could be used to predict the precipitation-dissolution equilibrium of struvite for ammonia nitrogen removal and recovery from wastewater.
-
-
-
[1]
[1] Bonmatí A, Flotats X. Waste Manag., 2003,23(3):261-272
-
[2]
[2] Doyle J D, Parsons S A. Water Res., 2002,36(16):3925-3940
-
[3]
[3] Jokela J P Y, Kettunen R H, Sormunen K M, et al. Water Res., 2002,36(16):4079-4087
-
[4]
[4] Uludag-Demirer S, Demirer G N, Chen S. Process Biochem., 2005,40(12):3667-3674
-
[5]
[5] Li X Z, Zhao Q L, Hao X D. Waste Manag., 1999,19(6):409-415
-
[6]
[6] Zhang W X, Lau A. J. Chem. Technol. Biotechnol., 2007,82 (6):598-602
-
[7]
[7] Zhang C, Chen Y G. Environ. Sci. Technol., 2009,43(16): 6164-6170
-
[8]
[8] Taylor A W, Frazier A W, Gurney E L. Trans. Faraday Soc., 1963,59:1580-1584
-
[9]
[9] Snoeyink V L, Jenkins D. Water Chemistry. New York: John Wiley and Sons, 1980:306-309
-
[10]
[10] Stumm W, Morgan J J. Aquatic Chemistry. New York: Wiley-Interscience, 1970:408-409
-
[11]
[11] Ohlinger K N, Young T M, Schroeder E D. Water Res., 1998,32(12):3607-3614
-
[12]
[12] Ronteltap M, Maurer M, Gujer W. Water Res., 2007,41(5): 977-984
-
[13]
[13] Aage H K, Andersen B L, Biota A, et al. J. Radioanal. Nucl. Chem., 1997,223(1/2)213-215
-
[14]
[14] Mijangos F, Kamel M, Lesmes G, et al. React. Funct. Polym., 2004,60:151-161
-
[15]
[15] Wang J S, Song Y H, Yuan P, et al. Chemosphere., 2006,65 (7):1182-1187
-
[16]
[16] WANG Jian-Sen(王建森), SONG Yong-Hui(宋永会), YUAN Peng(袁鹏), et al. Acta Scientiae Circumstantiae (Huanjing Kexue Xuebao), 2006,26(2):208-213
-
[17]
[17] Ali M I, Schneider P A, Hudson N. J. Indian Inst. Sci., 2005,85(3):141-149
-
[18]
[18] Miles A, Ellis T G. Water Sci. Technol., 2001,43(11)259-266
-
[19]
[19] Babic′-Ivancic′ V, Kontrec J, Brecevic′ L. Urol. Res., 2004, 32(5)350-356
-
[20]
[20] Golubev S V, Savenko A V. Experiment in Geosci., 2001, 10:76
-
[21]
[21] Dempsy B A. Proceedings of the 52nd Industrial Waste Conference. Purdue Research Foun Ed., Indiana: CRC Press, 1997:369-376
-
[22]
[22] JIANG Ke(姜科), ZHOU Kang-Gen(周康根), PENG Jia-Le (彭佳乐). J. Cent. South. Univ. T. (Sci. Technol.) (Zhongnan Daxue Xuebao: Ziran Kexue Ban), 2009,40(5):1178-1182.
-
[23]
[23] Babic-Ivancic V, Kontrec J, Brecevic L, et al. Water Res., 2006,40(18):3447-3455
-
[24]
[24] Musvoto E V, Wentzel M C, Ekama G. A. Water Res., 2000,34(6):1868-1880
-
[25]
[25] Warmadewanthi, Liu J C. Sep. Purif. Technol., 2009,64(3): 368-373
-
[26]
[26] Stratful I, Scrimshaw M D, Lester J N. Water Res., 2001,35 (17):4191-4199
-
[27]
[27] Diwani G E, Rafie S E, Ibiari N N E, et al. Desalination., 2007,214(1/2/3):200-214
-
[28]
[28] Gunay A, Karadag D, Tosun I, et al. J. Hazard. Mater., 2008,156(1/2/3):619-623
-
[29]
[29] Pastor L, Mangin D, Barat R, et al. Bioresource Technol., 2008,99(14):6285-6291
-
[30]
[30] Booker N A, Priestley A J, Fraser I H. Environ. Technol., 1999,20(7):777-782
-
[1]
-
-
-
[1]
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
-
[2]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[3]
Chunguang Rong , Miaojun Xu , Xingde Xiang , Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146
-
[4]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[5]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[6]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[7]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
-
[8]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[9]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[10]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[11]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[12]
Jia Wang , Qing Qin , Zhe Wang , Xuhao Zhao , Yunfei Chen , Liqiang Hou , Shangguo Liu , Xien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044
-
[13]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[14]
Dongyan Tang , Yanqiu Jiang , Su'e Hao , Yunchen Du , Lizhu Zhang , Zhigang Liu . 融合优势资源与聚焦多元培养的非化类大学化学一流课程建设. University Chemistry, 2025, 40(6): 71-76. doi: 10.12461/PKU.DXHX202406062
-
[15]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[16]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[17]
Lijun Dong , Pengcheng Du , Guangnong Lu , Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041
-
[18]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[19]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[20]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(523)
- HTML views(48)