Citation: LI Hui-Quan, CUI Yu-Min, WU Xing-Cai, HONG Wen-Shan, HUA Lin. Effect of La Contents on the Structure and Photocatalytic Activity of La-SrTiO3 Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2597-2604. shu

Effect of La Contents on the Structure and Photocatalytic Activity of La-SrTiO3 Catalysts

  • Corresponding author: CUI Yu-Min,  WU Xing-Cai, 
  • Received Date: 15 April 2012
    Available Online: 29 May 2012

    Fund Project: 国家自然科学基金(No.21171091) (No.21171091)安徽省高校省级自然科学研究课题(KJ2012A217,KJ2012B136)资助项目. (KJ2012A217,KJ2012B136)

  • La-doped SrTiO3 catalysts with different La contents were prepared by a sol-gel method, and characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis DRS), and low temperature nitrogen adsorption. The photocatalytic activities were evaluated by photo-degradation of methyl orange (MO). The results show that La-doped SrTiO3 keeps a perovskite structure and the absorption edge of 0.5% La-SrTiO3 sample is obviously red-shifted. There is no big difference between pure SrTiO3 and 0.5% La-SrTiO3 samples in particle size and morphologies. With the increase of La content, the photocatalytic activities of La-SrTiO3 samples under UV and visible light irradiation first increase, reaching a maximums around La content of 0.5%, and then decrease with further increasing La. Compared with pure SrTiO3, the 0.5% La-SrTiO3 sample obviously exhibits much higher UV and visible light photocatalytic activity. The enhanced photocatalytic activity can be mainly attributed to the increase of BET surface area, the enhancement in adsorption performance, the stronger absorption in 250~650 nm light region and the lower band-gap energy level.
  • 加载中
    1. [1]

      [1] Jia A Z, Su Z Q, Lou L L, et al. Solid State Sci., 2010,12: 1140-1145

    2. [2]

      [2] LI Rui-Pu(李瑞璞), LUO Wen-Jun(罗文俊), LI Zhao-Shen (李朝升), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010,26:149-152

    3. [3]

      [3] Sun Y, Liu J W, Li Z H. J. Solid State Chem., 2011,184: 1924-1930

    4. [4]

      [4] Subramanian V, Roeder R K, Wolf E E. Ind. Eng. Chem. Res., 2006,45:2187-2193

    5. [5]

      [5] Xie T H, Sun X Y, Lin J. J. Phys. Chem. C, 2008,112:9753-9759

    6. [6]

      [6] Wang G Y, Qin Y, Cheng J, et al. J. Fuel. Chem. Technol., 2010,38(4):502-507

    7. [7]

      [7] Wang D F, Ye J H, Kako T, et al. J. Phys. Chem. B, 2006, 110:15824-15830

    8. [8]

      [8] Ohno T, Tsubota T, Nakamura Y, et al. Appl. Catal. A: General, 2005,288:74-79

    9. [9]

      [9] Li X, Ye J H. J. Phys. Chem. C, 2007,111:13109-13116

    10. [10]

      [10] Chen X, Mao S S. Chem. Rev., 2007,107:2891-2959

    11. [11]

      [11] Chen S F, Liu Y Z. Chemosphere, 2007,67:1010-1017

    12. [12]

      [12] Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S, et al. Polym. Degrad. Stab., 2010,95(9):1894-1902

    13. [13]

      [13] Ho Y S, McKay G. Trans. Inst. Chem. Eng., 1998,76B:332-340

    14. [14]

      [14] Sun H Q, Bai Y, Jin W Q. Sol. Energy Mater. Sol. Cells, 2008,92:76-83

    15. [15]

      [15] Hagfeld A, Grätze M. Chem. Rev., 1995,95:49-68

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    10. [10]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(0)
  • Abstract views(385)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return